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Form vs. Function:
Theory and Models for Neuronal Substrates

The quest for endowing form with function represents the fundamental motivation behind all
neural network modeling. In this thesis, we discuss various functional neuronal architectures
and their implementation in silico, both on conventional computer systems and on neuromorpic
devices. Necessarily, such casting to a particular substrate will constrain their form, either
by requiring a simplified description of neuronal dynamics and interactions or by imposing
physical limitations on important characteristics such as network connectivity or parameter
precision. While our main focus lies on the computational properties of the studied models,
we augment our discussion with rigorous mathematical formalism. We start by investigating
the behavior of point neurons under synaptic bombardment and provide analytical predictions
of single-unit and ensemble statistics. These considerations later become useful when moving
to the functional network level, where we study the effects of an imperfect physical substrate
on the computational properties of several cortical networks. Finally, we return to the single
neuron level to discuss a novel interpretation of spiking activity in the context of probabilistic
inference through sampling. We provide analytical derivations for the translation of this “neural
sampling” framework to networks of biologically plausible and hardware-compatible neurons
and later take this concept beyond the realm of brain science when we discuss applications in
machine learning and analogies to solid-state systems.

Form vs. Funktion:
Theorie und Modelle fiir neuronale Substrate

Das Streben nach der Ausstattung von Form mit Funktion représentiert die fundamentale Mo-
tivation von neuronaler Netzwerkmodellierung. In dieser Arbeit diskutieren wir verschiedene
neuronale Architekturen und ihre Implementierung in siliziumbasierten Substraten, sowohl auf
konventionellen Computersystemen als auch auf neuromorpher Hardware. Notwendigerweise
wird eine solche Abbildung auf ein bestimmtes Substrat ihre Form einschranken, entweder durch
die Erfordernis einer vereinfachten Beschreibung neuronaler Dynamik und Wechselwirkung oder
durch das Auferlegen physikalischer Einschrankungen auf wichtige Eigenschaften wie etwa die
Netzwerkkonnektivitiat oder die Prézision einzelner Parameter. Wiahrend unser Hauptaugen-
merk auf der Rechenfihigkeit der untersuchten Modelle liegt, ergénzen wir unsere Diskussion
mit rigorosen mathematischen Formalismen. Wir beginnen mit einer Untersuchung des Verhal-
tens von Punktneuronen unter synaptischem Beschuss und liefern analytische Vorhersagen {iber
statistische Eigenschaften einzelner Neuronen und neuronaler Ensembles. Diese Uberlegungen
werden spéater niitzlich, wenn wir zu einer funktionalen Netzwerkebene iibergehen, auf der wir
die Effekte imperfekter Physikalischer Substrate auf die Recheneigenschaften einiger kortikaler
Modelle untersuchen. Zum Schluss kehren wir auf die Ebene einzelner Neuronen zuriick, um
eine neue Interpretation von Feuermustern im Kontext von stichprobenbasierter probabilistis-
cher Inferenz zu diskutieren. Wir liefern analytische Herleitungen fiir die Ubersetzung dieses
sogenannten “neural-sampling”-Konzeptes in biologisch plausible und hardwarekompatible neu-
ronale Netzwerke. Spéter {iberqueren wir auch die Grenzen der reinen Neurowissenschaft in-
dem wir Anwendungen auf maschinelles Lernen und Analogien zu physikalischen Festkérpern
erortern.
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"For a while, almost everyone was nervous about switching from the brain to the jewel. In
the early days, the jewel was a separate device that learned its task by mimicking the brain,
and it had to be handed control of the body at one chosen moment. It took another fifty
years before it could be engineered to replace the brain incrementally, neuron by neuron,
i a seamless transition throughout adolescence.”

So Grace had lived to see the jewel invented, but held back, and died before she could use
it? Jamil kept himself from blurting out this conclusion; all his guesses had proved wrong
so far.

Margit continued. "Some people weren’t just mervous, though. You’d be amazed how
vehemently Ndoli was denounced in certain quarters. And I don’t just mean the fanatics
who churned out paranoid tracts about the machines’ taking over, with their evil inhuman
agendas. Some people’s antagonism had nothing to do with the specifics of the technology.
They were opposed to immortality, in principle. "

Jamil laughed. "Why?"

"Ten thousand years’ worth of sophistry doesn’t vanish overnight,” Margit observed dryly.
"Every human culture had expended vast amounts of intellectual effort on the problem of
coming to terms with death. Most religions had constructed elaborate lies about it, making
it out to be something other than it was - though a few were dishonest about life, instead.
But even most secular philosophies were warped by the need to pretend that death was for
the best.

"It was the naturalistic fallacy at its most extreme - and its most transparent, but that
didn’t stop anyone. Since any child could tell you that death was meaningless, contingent,
unjust, and abhorrent beyond words, it was a hallmark of sophistication to believe other-
wise. Writers had consoled themselves for centuries with smug puritanical fables about
immortals who’d long for death - who’d beg for death. It would have been too much to
expect all those who were suddenly faced with the reality of its banishment to confess that
they’d been whistling in the dark. And would-be moral philosophers - mostly those who’d
experienced no greater inconvenience in their lives than a late train or a surly waiter -
began wailing about the destruction of the human spirit by this hideous blight. We needed
death and suffering, to put steel into our souls! Not horrible, horrible freedom and safety!"

Greg Egan, Border Guards, 1999






1. Prologue

The result is that the philosophy of mind is unique among
contemporary philosophical subjects, in that all of the most
famous and influential theories are false.

John Searle, Mind, 2004

Searle is right, of course — and the reason is quite obvious. Compared to other natural
sciences such as physics or astronomy, neuroscience is only a very young discipline. Sur-
geons have been repairing broken skulls since the Neolithic Era and even treating mental
disorders with trepanation, but they had only naked-eye phenomenological evidence to
work with. The lack of proper means of observation gave rise to some — from our modern
perspective — rather ludicrous medical theories, which remained surprisingly dominant in
Western medicine for several millennia.! Any attempt for a theory of mind formulated
before the 20th century was therefore as doomed to fall short of physical reality as an
explanation of ferromagnetism? or radioactivity without an understanding of quantum
mechanics. To add insult to injury, the dominance of theology on metaphysics was not
particularly helpful either, as, for example, Searle convincingly demonstrates in his critical
analysis of Cartesian dualism (Searle, 2004).

It is only for little over a century that we have started gaining insight into the “quanta”
of thought, which Golgi and Cajal have identified to be single cells — the neurons. It is even
quite likely that an even more microscopic level of description is needed for a thorough
understanding of thought, if we consider the complex interaction of genes, proteins and
neurotransmitters. In any case, if we are ever to appease the philosophers’ search (and,
in fact, our deeply human desire) for a correct theory of mind, our understanding must
reach down to at least the level of neuron and synapse dynamics.

However, an understanding of microscopic dynamics is clearly not all there is when it
comes to explaining macroscopic phenomena. Even if microscopic interactions completely
determine the macroscopic behavior of dynamical systems, it is often difficult, if not
impossible to comprehend the behavior of large systems in terms of their components’
behavior alone. The semiclassical Ising model is a prime example for the emergence of
complex phenomena such as phase transitions from relatively simple interactions between
pairs of particles. An understanding of high-level ensemble phenomena must therefore

1 In an address delivered at the International Congress of Physiology, Richet (1910) comments on the
theory of humorism as follows: But what is truly extraordinary, what surpasses our wildest dreams,
is the fact that for sixteen hundred years all physicians and all physiologists remained bound in the
shackles of this incomprehensible error of the four cardinal humours. By what miracle was the spirit of
conservatism or of routine able to hide the truth to such a degree? The men of science and the doctors
of former times were no less intelligent than those of to-day. Nevertheless they accepted without
a shadow of proof these childish theories; they could not see most simple facts, and they saw most
complicated things which not only did not exist but which were not even probable.

2 See (Feynman et al., 2011) for an intuitive explanation of the Bohr — van Leeuwen theorem.



1. Prologue

be based on a thorough description of microscopic dynamics, but must also operate at
a higher level of abstraction, defining new (macroscopic) properties and variables which
obey their own laws of motion.

Under these premises, we are compelled to argue in favor of a functionalist approach
to neuroscience in general and theoretical and computational neuroscience in particular.
Indeed, although not often explicitly stated, functionalism is fundamental to all natural
sciences, but this notion comes loaded with etymological baggage due to its prominence in
the philosophy of mind. We must therefore establish what we consider to be the fundamen-
tal tenets of functionalism in the context of theoretical and computational neuroscience.

Firstly, we argue that the mathematical equations that describe generalized laws of
motion do not always have to be exact in order to provide a useful description of the
behavior of a physical system. Although technically incorrect, Newtonian mechanics is,
for all practical purposes, sufficient for describing phenomena from the smallest (particle
trajectories in monoatomic gases) to the largest (planetary orbits?) of scales. A useful
approximation is a fundamental requirement whenever a complex physical system is to
be described with a tractable amount of reasonably complicated equations. While being
arguably the most complex among known physical systems, biological neural networks
must be amenable to a similar treatment. This is, for example, the main argument
behind our use of point neurons, which are also ubiquitous in contemporary theoretical
and computational neuroscience.*

Secondly, we argue that equations do not necessarily need to model fundamental quan-
tities to be useful. In particular, “high-level” ensemble observables such as temperature
and pressure or even more abstract quantities such as entropy are not only practical, but
become even necessary to describe and understand particular aspects of physical reality.
This applies not only to the description of neural ensembles, but also to the information
that functional units in the brain (single neurons, cortical microcircuits) may exchange.
While there are certainly situations in which individual spike timing is essential, infor-
mation can also be encoded in, e.g., spatiotemporal firing rate patterns (Decharms and
Zador, 2000). If then, for example, a neural population encodes information in its firing
rate only, then a functional representation of this population by means of a single number
— its firing rate — is justified (and individual membrane potentials may be neglected).

Thirdly, we must define the notion of faithful simulation. Consider a physical system
— in our case, this is usually a neural network — that we wish to model using a different
physical device, usually a silicon substrate. If we define a set of dynamic variables to be
a full representation of all the relevant information about the system to be modeled, then
any other physical system that, at some level of abstraction, encodes a representation
of these variables, with sufficiently similar® dynamics to their original counterparts, is
a faithful simulation of the original physical system. In other words, a simulation that

3 Yes, even for Mercury, for which the amount of the perihelion precession caused by general relativity
amounts to less than an arc-minute per century (Clemence, 1947).

4 This does not mean that the spatial structure of the dendritic tree has no computational properties.
We make this clear in Section 2.1.4. However, for the theoretical and computational models discussed
here, we choose the point neuron model as an appropriate level of abstraction. Any statements about
biology must, of course, be validated with appropriate data.

5 The required precision can admittedly be the subject of dispute. However, just as the motion of
individual molecules is usually not considered in air flow simulations, it is usually possible to find a
general consensus of what can be considered irrelevant imperfections of the assumed model.



computes the evolution of another system with sufficient precision is a good simulation.®

This is an essential assumption that we must make if we are to learn anything from
computer simulations. When arguing for particular physical realizations of neuronal
systems, statements along the lines of “it does not rain in a computer simulation” are
sometimes heard.” Taken unequivocally, such a statement must be wrong. While no
current computer can predict the position of individual raindrops, the usefulness of
weather simulations lies beyond any reasonable doubt.

From this functional rationale, a certain level of dichotomy between form and function
becomes almost unavoidable in computational neuroscience. By the very nature of their
field of research, modelers are constantly confronted with questions that pit form and
function against each other. What is the optimal level of abstraction for a particular
neuron or network model? What are its target computational properties? How does
it correlate with experimental data? With what degree of accuracy and efficiency can
it perform particular tasks? How robust is it with respect to various types of noise?
Or, in summary: Can I design a network model with the following list of functional
properties that is constrained in form by the following list of theoretical and experimental
considerations?

By virtue of sheer numbers and the inevitability of natural selection, nature has im-
proved form to achieve function over the course of billions of years. It has managed to
enclose the pinnacle of known computational power within less than two liters of the
most complex form of matter known to man. The interesting question is whether we are
able to do the same in much less time but also with a much more guided strategy. If
the methodology of modern physics and astronomy has anything to teach us, it is that
we should simultaneously attack this problem with data, mathematics and silicon. The
tenets of functionalism outlined above lie at the heart of this approach.

It is with this mindset that we approach neural theory and computation throughout
this thesis. We take inspiration from biology, formulate mathematical models of neural
dynamics and discuss implementations in neuromorphic hardware.

As this work is going to cover a broad range of topics and we wish it to be a useful
reference for the interested reader, we considered it necessary to provide an ample intro-
duction of the conceptual and material tools required throughout the main body of this
work. Chapters 2 and 3 are intended to provide this knowledge base and are designed to
provide the reader with at least an elementary mindset of a neurophysiologist, modeler,
theoretician and neuromorphic hardware engineer. As such an (over)ambitious scope can
not be covered exhaustively within the narrow confines of this thesis, we will often point
out additional literature — especially textbooks — that should provide an adequate amount
of detail on the respective topic.

In Chapter 4 we investigate the behavior of neurons under Poisson bombardment - a
popular assumption in many network models with good support in experimental data.
We derive detailed equations for the stochastic properties of certain point neuron mod-
els in this regime, which we will later use when we discuss various functional network

6 We shall later discern between simulation and emulation when referring to conventional (von Neumann)
computing architectures and physical-model neuromorphic hardware, respectively.

" This has been used to argue in favor of the necessity of “biomorphic” hardware, which represents a
detailed physical model of biological neural circuits.
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models. Additionally, we derive expressions for pairwise shared-input correlations of such
neurons, which become useful for a formal understanding of the effects of finite-size pools
of uncorrelated noise sources.

In Chapter 5 we discuss the physical implementation of cortical network models in ana-
log neuromorphic hardware. We focus our discussion on a particular hardware system,
but we study generally relevant phenomena and design techniques that are expected to be
useful in any analog device of limited size. This chapter is intended as a toolbox for mod-
elers that are prepared to face the challenge of working with an imperfect computational
substrate in order to reap the benefits of low power, massive parallelism and enormous
speedup that can be gained by departing from conventional von Neumann architectures.

Finally, in Chapter 6, we discuss several models for Bayesian inference in neural net-
works. Inspired by the ability of the brain to perform such computations, we build our
networks with biologically-inspired neuron models, but also discuss applications that go
beyond the realm of brain science. In particular, we consider problems ranging from psy-
chophysics to machine learning and also discuss some interesting parallels to solid-state
phenomena.

Many of the results that are discussed in this manuscript, both theoretical and experi-
mental, are the outcome of collaborative efforts and have already been published in various
forms. In particular these include several publicly available reports (Briiderle et al., 2010;
Jordan et al., 2014; Petrovici et al., 2011, 2012) and the following journal papers and
conference contributions (co-first authorship is denoted by a *):

e D. Briiderle, M. A. Petrovici, B. Vogginger, M. Ehrlich, T. Pfeil, S. Millner, A.
Griibl, K. Wendt, E. Miiller, M.-O. Schwartz, D. de Oliveira, S. Jeltsch, J. Fieres,
M. Schilling, P. Miiller, O. Breitwieser, V. Petkov, L. Muller, A. Davison, P. Krish-
namurthy, J. Kremkow, M. Lundqvist, E. Muller, J. Partzsch, S. Scholze, L. Ziihl,
C. Mayr, A. Destexhe, M. Diesmann, T. Potjans, A. Lansner, R. Schiiffny, J. Schem-
mel and K. Meier. A comprehensive workflow for general-purpose neural modeling
with highly configurable neuromorphic hardware systems. Biological Cybernetics,
104:263-296, 2011.

e T. Pfeil*, A. Griibl*, S. Jeltsch*, E. Miiller*, P. Miiller*, M. A. Petrovici*, M.
Schmuker*, D. Briiderle, J. Schemmel and K. Meier. Siz networks on a universal
neuromorphic computing substrate. Frontiers in Neuroscience, 7:11, 2013.

e M. A. Petrovici*, J. Bill*, I. Bytschok, J. Schemmel and K. Meier. Stochastic
inference with deterministic spiking neurons. arXiv preprint arXiv:1311.3211, 2013.

e M. A. Petrovici, B. Vogginger, P. Miiller , O. Breitwieser, M. Lundqvist, L. Muller,
M. Ehrlich, A. Destexhe, A. Lansner, R. Schiiffny, J. Schemmel and K. Meier.

Characterization and compensation of network-level anomalies in mized-signal neu-
romorphic modeling platforms. PloS one, 9(10):e108590, 2014.

e D. Probst*, M. A. Petrovici*, I. Bytschok, J. Bill, D. Pecevski, J. Schemmel and K.
Meier. Probabilistic inference in discrete spaces can be implemented into networks
of lif neurons. Frontiers in computational neuroscience, 9, 2015.



e J. Jordan, T. Tetzlaff, M. A. Petrovici, O. Breitwieser, I. Bytschok, J. Bill, J.
Schemmel, K. Meier and M. Diesmann. Deterministic neural networks as sources of
uncorrelated noise for probabilistic computations. Accepted for presentation at the
CNS 2015 conference. To appear in BMC neuroscience.

e M. A. Petrovici, I. Bytschok, J. Bill, J. Schemmel and K. Meier. The high-
conductance state enables neural sampling in networks of LIF neurons. Selected
for oral presentation at the CNS 2015 conference. To appear in BMC neuroscience.

Furthermore, some of the topics that we discuss here have also been addressed in sev-
eral Bachelor, Master and Diploma theses that the author of this thesis has coordinated
and co-supervised (Breitwieser, 2011, 2015; Bytschok, 2011; Korcsak-Gorzo, 2015; Leng,
2014; Miiller, 2011; Petkov, 2012; Probst, 2014; Rivkin, 2014; Roth, 2014; Stockel, 2015;
Weilbach, 2015). In the beginning of each chapter, we therefore specifically point to other
literature that has already been written on the respective subject and that has provided
material for this manuscript. The sources of previously published material are listed again,
in detail, in Section A.3.
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At first glance, scientists seem to have needed a surprisingly long amount of time to
find the physical correlate of thought. While the brain itself, as an organ, has long
been considered the seat of the mind!, it was only at the turn of the 20th century that
Cajal and Golgi established the ‘neuron doctrine” - the hypothesis that the neuron is
the fundamental functional unit of the brain. In the light of much earlier achievements
in the physics of small scales, such as Bernoulli’s kinetic theory of gases in the early
18th century, this comparatively slow development might appear paradoxical, especially
given Hooke’s and van Leeuwenhoek’s discovery of the cell over two centuries before the
discovery of the neuron. However, when considering the complexity of the “elementary”
components involved, and moreover that of the emergent phenomena, a theory of mind
has to appear much less intuitive — and probably much less mathematically tractable —
than thermodynamics.

Evidently, if we strive for more than just a phenomenological description of high-level
information processing in the brain, we need to understand the functionality of its fun-
damental components. In this context, Section 2.1 represents as a brief introduction to
the morphology and electrophysiology of neurons and synapses. In it, we review those

!Notable exceptions include Aristotle, who believed it to be a blood-cooling device (Gross, 1995).
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processes in nerve cells that appear most relevant to information processing and commu-
nication. These “microscopic laws of motion” represent the fundamental building blocks
for all theoretical and functional models that we discuss later on.

We should make clear that it happens with the mindset of a physicist when we follow
such a reductionist approach. When we describe higher-level phenomena to “emerge”
from low-level dynamics, there is no deus ex machina involved. When the whole becomes
more than the sum of its parts, as is arguably the case for the brain, it is because a large
ensemble of simple components exhibits features that are impossible to observe when
only few such components interact. A useful description of such a system often involves
the definition of new macroscopic variables, but they always represent a high-level view
of a system that is entirely governed by fundamental interactions between its microscopic
constituents.

Evolution is not equivalent to engineering and therefore its constructs, incrementally
perfected over billions of years, always inherit vestiges of their predecessors, which might
not necessarily serve a functional purpose. Additionally, all biological units need to per-
form metabolic and reproductive activities, for sustainment and growth, which massively
add to their structural complexity. It is therefore quite likely that a rather high level
of abstraction is sufficient (and probably even best suited) to understand information
processing in neural networks. To which extent one can push this abstraction, however,
remains an open question and subject to much debate among researchers in the field.

The requirement of abstraction, as well as a precise description thereof, is well-
established throughout all physical sciences. It is the search for a minimal, but complete
set of laws required to describe a given system that gives rise to the notion of a model.
For the most part, a “model” is understood as synonymous to a “mathematical model”
of a system, that is, a set of rules and parameters, preferably expressed as equations,
which completely describe the dynamics of variables associated to the relevant properties
of the system. This makes it possible to apply a vast array of mathematical tools and
formalisms to analyze and predict its behavior. The unparalleled success of this approach
has established it as the centerpiece of all natural sciences.

Building on the aforegoing electrophysiological considerations, Section 2.2 outlines the
construction of several abstract models for neurons and synapses. The presented neuron
models exhibit various levels of abstraction, particularly concerning the spike generation
mechanism of neurons, which are crucial for the investigations described in Chapters 4 to

6.
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2.1. Morphology and Electrophysiology of Biological
Neurons and Synapses

This section serves as a short overview of the biological mechanisms that underpin neuron
and synapse dynamics. Understanding them is indispensable to formulating abstract
models of neurons and synapses. For a much more in-depth view of the phenomena
described here, we recommend Alberts et al. (1994) for the molecular biology topics and
Gerstner and Kistler (2002) for the mathematical treatment.

2.1.1. Electrical Properties of the Cell Membrane

Just like every other cell, a neuron’s interior is separated from the outside environment
by the so-called plasma membrane. It consists mainly of a lipid bilayer, but also contains
various (transmembrane) proteins which are essential for building up and dynamically
changing a voltage across the membrane (Figure 2.1).

While highly permeable to small neutral molecules such as water, the lipid bilayer itself
is practically impermeable to ions and polar molecules, which are the main charge carriers
in organic media, thereby effectively insulating the interior of the cell from its exterior.
Due to its narrow width of roughly 5nm, the membrane effectively acts as a capacitor,
with a typical capacitance of Cp, = 1 uF/cm?. For a patch of membrane with an area
of 1 m?, membrane voltage changes of several tens of mV can therefore be achieved by
moving only several thousand monovalent ions across the membrane, about 3 orders of
magnitude below the total number of ions in the cytosol. It is important to note that only
those ions lying very close (<1nm) to the membrane influence its voltage, therefore any
changes in the membrane potential need not affect ion concentrations in the rest of the
cytosol.? This property is quintessential for enabling the high speed of neuron membrane
potential dynamics required by real-world interaction and information processing — an
aspect we shall return to later.

Cells make good use of their capability of establishing a gradient across their membrane,
both chemical and electrical. Indeed, transmembrane gradients are the driving force of
essentially all metabolic processes in the cell, especially solute transport and ATP syn-
thesis.> However, the capability of the plasma membrane to maintain an electrochemical
gradient is necessary, but not sufficient, to explain the existence of the gradient itself. The
structure responsible for the (trans)membrane potential is the Nat-K* pump.?

2Let us assume a neocortical pyramidal cell has a total area of S = 3 - 10*um? and a volume of
V =10*um3, with a specific membrane capacitance of ¢ = 1uF/cm? and a Na™ concentration of
[Nat] = 3. 107ions/um®. The number of ions required for an increase in membrane potential
by 10mV is then N = ¢SU/e ~ 2 - 107, as compared to the total number of ions in the cell
Niot = [NaT]V = 3-10"'. This is only an approximate calculation, as estimates of cell sizes vary
considerably, see e.g. Ambros-Ingerson and Holmes (2005).

3The quintessential question in the search for the origin of life is how this gradient could have appeared
in early cell-like structures. Furthermore, while in prokaryotic cells, ATP is synthesized at the plasma
membrane, in eukaryotes this process is taken over by specialized organelles - mitochondria and plas-
tids. It has been argued that it was the acquisition of these organelles by early prokaryotes that
enabled the evolution of complex life. For an excellent discussion on these topics, we refer to Lane
and Martin (2010, 2012).

4Actually, an electrochemical gradient would exist even without the Na™-K* pump, due to the high
concentration of organic compounds inside the cell. These, in turn, cause a high intracellular osmo-
larity, which would force water to move into the cell by osmosis. The Na™-K* pump counters this
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Figure 2.1.: Sketch of the plasma membrane, with embedded active pumps and leakage
channels. See text for details. Image taken from expertsmind.com.

The Na™-K* pump is an ATPase, a carrier protein embedded in the plasma membrane
that hydrolyzes ATP to provide the energy for its operation. Within a full pump cycle,
it transports 3 Na™ ions from the cell plasma to the extracellular medium and 2 K ions
from the extracellular medium into the plasma. This leads to an excess of negative charge
(or rather, a net total deficit of positive charge) inside the cell, which in turn translates to
a negative membrane potential. As the electrochemical gradient increases, the pumping
process becomes less efficient and the membrane potential reaches some equilibrium value.

The activity of Na™-K* pumps alone, however, would only account for about a tenth of
the measured equilibrium value of some -70mV. A second type of transmembrane protein
plays an essential role here: the K™ leakage channel. This channel protein is permanently
“open” and only allows the passage of KT ions. Because of the high concentration of
potassium inside the cell, due to the Na™-K* pump, an outflow of K ions is established,
that pulls down the membrane potential even further. This happens until an equilibrium
value is reached, the so-called Nernst potential, the value at which diffusive and electrical
forces counterbalance:

[X]ext

! Kine
where R is the universal gas constant, F' the Faraday constant, T the absolute tempera-
ture, 2 the charge of the ion in question X and [X]ex/ins its extracellular and intracellular
concentrations, respectively. However, various ions tend to have different Nernst po-
tentials, due to their different charges and concentrations, hence the resting membrane
potential becomes something like a weighted mean thereof.

Figure 2.2 shows the equivalent circuit that determines the resting potential Vg of the

_RT

Ev = ——
X zF

(2.1)

potentially destructive effect by increasing the net extracellular concentration of inorganic ions.
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Figure 2.2.: Left: Full equivalent circuit of a cell membrane, with different ion concen-
trations acting as batteries. The Na™ and K+ batteries are governed by the
Na™-K* pump and the Kt leakage channel, as described in the text above.
Na™ leakage channels also exist (see Figure 2.1), but are much fewer in num-
ber (with a ratio of about 1:100 with respect to KT leakage channels). The
two other ions that have significant contributions to the membrane poten-
tial are Ca*™ and Cl~, which have their concentrations regulated by similar
pumping and leakage mechanisms. Right: Reduced equivalent circuit, with
all ion concentrations condensed into a single battery and conductance.

5
|

membrane. Taking into account only the contributions from monovalent ions®, Vet can
then be calculated from the Goldman-Hodgkin-Katz (GHK) equation® :

RT | > PXj [X;r]ext +> Py; [V Jint
i -
F Zz 1DX%.+ [Xi—i_]int + Zz Pylf D/z }ext

V;est - (22)

with Px denoting the permeability of the membrane to the ion type X. For a single ion
type, it can be easily seen how the Nernst equation is merely a special case of the more
general GHK equation. Because the membrane permeability to K is usually at least an
order of magnitude above the permeabilities to all other ion types, Viest lies rather close
to the KT reversal potential, which usually lies around -80 mV.”

At this point, we can reduce the equivalent circuit from Figure 2.2 to a simple RC
circuit, with a single battery defining the rest or leak potential (here, as well as in most
abstract neuron models, Viest and F) can be used interchangeably) as calculated from the
GHK equation (Figure 2.2). The term "leak potential" stems from the intuitive picture
that following any temporary external electric stimulation, the capacitor leaks charges
into the battery and reverts to its rest potential along an exponential curve. Indeed, the
associated ODE of the membrane potential can be easily derived from Ohm’s law in the

5 For ions of higher valence, such as Ca®™™, extensions to the GHK equation exist - see, e.g., Pickard
(1976). However, since during resting conditions, both the permeability and the concentration of
Ca'™ ions is comparatively low, calcium does not play a significant role in defining Viest.
Permeability and conductance are closely related, but not equivalent. Channel conductance is, in
particular, strongly voltage dependent. For a detailed discussion, see, e.g., Schultz et al. (1996).

To get a feeling of the relevant variables, a numerical example is in order. For that, we consider
measurements of the squid giant axon from Hodgkin (1958). The values given by Hodgkin read:
Prat = 1, P+ = 100, Po— = 10 (permeabilities are given relative to Pya+), [Kt]ext = 20, [KHJine =
200, [Nat]ext = 440, [Nat]ins = 50, [Cl Jext = 540, [Cl Jiny = 40 (ion concentrations given in

6

7

mmol/l). At a temperature of 37°C, the Nernst potentials then read Ey,+ = 58.1, Ex+ = —61.5
and Fq - = —69.6, with the equilibrium membrane potential lying at E; = —58.6 (potentials given in
mV).
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reduced equivalent circuit:

d
cmd—? = (B —u) + 1, (2.3)

where [ stands for any external current source. The variable 7, = Cy, /g is called the
membrane time constant and quantifies the speed at which the membrane potential reacts
to external stimuli. This characteristic variable can be found in virtually any abstract
neuron model. See Sections 2.2 and 4 for a much more detailed discussion of membrane
potential dynamics.

We now have a good mathematical model for the membrane potential of a cell in its
resting state. Note that until this point, we have not yet addressed excitable cells (in
particular, neurons), so the above considerations are, in principle, valid for any biological
cell.

The above model also accounts for membrane dynamics under external current stimu-
lation, albeit while implicitly neglecting the spatial extent, i.e., the 3D structure of the
cell. It is extremely important to keep in mind that point models invariably limit the
computational power of the units modeled as such. Also, for all point models, any claims
of biological plausibility need to be reviewed carefully, especially since many neuron types
have a very distinct branching structure. While most models and methods considered
throughout this thesis do not take the spatial structure of the cells involved into consider-
ation, we will address this issue briefly both from a theoretical perspective (Section 2.1.4),
as well as in the case of a concrete cortical network model (Section 5.3).

2.1.2. Action Potentials and the Hodgkin-Huxley Neuron Model

Just like all other cells, excitable cells establish an electrochemical transmembrane gra-
dient for metabolic reasons. In addition to that, however, evolution has provided them
with ways of manipulating their membrane potential, thereby allowing much faster com-
munication and computation than would normally be possible through chemical diffusion
processes. While many types of excitable cells exist, which also play an essential role in in-
formation processing (such as receptor cells or myocytes), the particular class of excitable
cells we are interested in here are the neurons in the central nervous system.

Neurons do not exchange information permanently.® Their communication is mediated
by all-or-nothing events, so-called action potentials (APs), or simply spikes. These are
large pulses in the membrane potential with an amplitude of about 100 mV and a typical
duration of several ms.

As a rough approximation, it can be said that action potentials occur when the mem-
brane potential of a neuron increases beyond a certain value (usually around -50mV).
The membrane then spontaneously depolarizes, usually exceeding OmV, after which it
quickly hyperpolarizes, even dropping below its resting potential for several ms. During
this hyperpolarized state, also called the refractory phase, even strong stimuli can not
initiate a second AP.

These phenomenological findings can be explained by another class of transmembrane
proteins: voltage-gated ion channels. This hypothesis (later confirmed by Erwin Neher

8 This is, of course, not absolutely true, since mechanisms such as local ion depletion, neurotransmitter
diffusion or electrical crosstalk do enable additional communication pathways between neurons. Fur-
thermore, electrical synapses (see Section 2.1.3) can also create a continuous link between membrane
potentials.

12
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and Bert Sakmann, Nobel Prize 1991), along with a stochastic description of their dy-
namics, has earned Alan Lloyd Hodgkin and Andrew Huxley the 1963 Nobel Prize. The
Hodgkin-Huxley model consists of a set of four differential equations and remains the
most accurate model of neuronal membrane dynamics to date.’

Similar to leakage channels, voltage-gated ion channels only allow the passage of specific
ion types. However, their conformation changes as a function of the membrane poten-
tial, thereby affecting their permeability. In a simplified picture', these transmembrane
proteins can be thought of as having "gates" which open and close stochastically, depend-
ing on the membrane potential. Figure 2.5 sketches several possible states for the Na*t
and Kt voltage-gated ion channels. Both channel proteins have four gates, with the Na™
channel possessing two different types of gate.!! If we denote the probabilities of the three
gate types being open by m, h (for Na™) and n (for K), respectively, and the maximum
conductance of the ion channels (in a fully open state) by gy,+ and gk+, then the average
currents flowing through the two ion channels read

<INa+> = gNa+m3h(u - ENa*) and (24)

(Ix+) = gg+n*(u — Eg+).

The voltage dependence of the gating variables m, h and n is given by

[x —zo(w)], =€ {m,h,n}, (2.6)

with specific time constants 7,(u) and equilibrium values zg(u). Alternatively, some
authors prefer to use a somewhat different form of the above ODE:

T =az(u)(l —x)— By(u)x, x€{m,h,n}, (2.7)

with 2o(u) = o (u)/[0e (1) + B ()] and 7, () = 1/[a (u) + By (u)]. Figure 2.4 shows fits
for 7,(u) and xo(u) with the original parameters from Hodgkin and Huxley (1952).

9 Modern extensions of the original model mainly include the addition of other types of ion channels
and the morphology of neural cells.

We have to stress that the Hodgkin-Huxley model is purely phenomenological and that the “gates”
referenced multiple time in the text are only a mechanistic interpretation of the integer exponents in
the gating variable equations. This is, however, quite close to reality: voltage-sensitive transmembrane
proteins have, indeed, multiple identical compartments that change their conformation depending on
the membrane potential. The voltage dependence of channel protein conformations is still the subject
of intensive research, see, e.g., Long et al. (2007) for recent results on the structure of voltage-gated
K™ channels.

More recent studies from the 1990s have shown that the K* channel also features several inactivation
mechanisms of its own, one of which is similar to the ball-and-chain model of Na't inactivation from
Figure 2.3. See Kurata and Fedida (2006) for a review.
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Figure 2.3.: Ball-and-chain model of a voltage-gated Na* channel. Upon excitatory stim-
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ulation of the neuron, its membrane potential increases, thereby (stochas-
tically) triggering an opening, or activation, of the channel protein. The
resulting influx of Na™ ions increases the membrane potential even further,
which causes even more Na™ channels to open. This feedback loop contin-
ues until the “ball-and-chain” components of the molecule, which also react
to high membrane voltages, but on a slower timescale, block the channel,
thereby inactivating it. Note the difference between inactivation, which is an
active self-blocking of ion channels, and deactivation, which is the process
by which, when the membrane potential shifts outside the range that caused
the channels to open in the first place, they simply close again. The latter is
exactly what happens with voltage-gated K* channels in the Hodgkin-Huxley
model, following a spike (see text for details). Image courtesy of Penn State
Department of Biology.
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Figure 2.4.: Gating variables of the voltage-gated Na®™ and K% ion channels in the
Hodgkin-Huxley model. Left: Equilibrium values as a function of the mem-
brane potential u. Note how the m and n gates open at higher values of wu,
thereby activating the Na™ and K* channels, respectively. Conversely, the
h gates close for high u, thereby inactivating (i.e., actively closing) the Na™
channels. Right: Time constants as a function of membrane potential wu.
Due to their fast dynamics (low time constant), the m channels open quickly,
allowing the sharp onset of the action potential. Both the inactivation of the
Na* channels via the h gates and the activation of the KT channels via the
n gates occur on a slower timescale, jointly causing the falling flank of the
action potential.
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Figure 2.5.: Spiking dynamics in the HH neuron model. Top: membrane potential during
a single spiking event caused by a short step current stimulus at ¢ = 0 ms.
Bottom: zoom-in on the time axis during the AP showing the evolution
in time of all the relevant dynamic variables. (a) Current stimulus. (b)
Membrane potential. The initially small change of ~ 10mV caused by the
current stimulus results in a fast opening of the voltage-gated Nat channels
which is strong enough to trigger a cascade effect that ultimately results in
the rising flank of the AP. After the peak voltage is reached, inactivation of
the Na' channels and activation of the KT channels causes the membrane
potential to drop below the leak potential and slowly return to the resting
state. (c) Evolution of Na™ channel conductance (solid curve) and gating
variables (dashed curves). The fast activation due to the m gates (in green) is
followed by a slower inactivation due to the h gates (in red). This difference in
time constants allows the sharp onset of the AP. Together with the activation
of the KT channels (n gates, see panel (e)), the inactivation of the Na™
channels is responsible for the refractory period that follows the AP. (d) Gate
configuration of Nat channels. This is only a symbolic representation, since
the conformational changes of the proteic subunits that build up individual
gates are stochastic processes. (e) Evolution of the Kt channel conductance
(solid curve) and gating variable (dashed curve). The slower dynamics of
the n gates as compared to the m gates allows the buildup of the AP before
the decay towards the KT reversal potential. Note the long tail of the KT
conductance compared to the Na® conductance. (f) Gate configuration of
K™ channels. As in panel (d), this is only a symbolic representation. For the
full set of parameters used for this simulation, see Tables A.1 and A.2.
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Now we can return to the equivalent circuits from Figure 2.2. For the sake of clarity,
let us further assume that the leak and pump conductances - and thereby also g, - are
constant. We can now extend the reduced equivalent circuit by the voltage-gated Na™* and
KT channels described above. With equations 2.4 and 2.5, the ODE for the membrane
potential then becomes

Cintt = — gt M>h(u — Exot) — gin(u — Ex) — gi(u — By) + 1 (2.8)

The four ODEs given by Equations 2.6 and 2.8 fully define the Hodgkin-Huxley neuron
model.

Let us take a look at the dynamics of this model, with Figure 2.5 serving as graphi-
cal guidance. The parameters used in this simulation are given in Tables A.2 and A.1.
Without external stimulus, the membrane potential is at rest and does not change in time.
Note that in the HH model, the rest potential is not equal to the leak potential Ej, but lies
significantly lower, due to the K™ channels always being open with nonzero probability.
The Nat and K voltage-gated channels are predominantly closed, or deactivated, due
to the m and n gates, respectively. Upon stimulation with a strong enough step current,
the m-gates start opening, activating the Na™ channels and allowing an influx of Na™,
thereby increasing the membrane potential even further and leading to a cascade effect
that pulls the membrane potential close to Ey,+. This represents the steeply rising flank
of the action potential. Due to their slower dynamics (73, > 7,,, see Figure 2.4), the
inactivation of the Na™ channels via the m gates becomes dominant only with a certain
delay, thereby not interfering with the sharp action potential onset.

If only Na' channels were present, the membrane potential would now slowly
(Tm = Cm/g1 = 10 ms) decay towards E;. However, on roughly the same timescale
as the inactivation of the Na® channels, the activation of the Kt channels occurs.'?
These quickly pull the membrane potential back down towards Ek+, thereby generating
the steep falling flank of the action potential. Again, due to their slow dynamics, the h
gates remain closed and the n gates remain open for some time, leading to the relatively
long characteristic “undershoot” of the membrane potential following the sharp spike.
During this so-called refractory period, another spike is difficult to elicit, due to both the
Na™ channels being inactivated and the K* channels being open.

Apart from spiking when receiving strong and fast enough stimulation, HH neurons
exhibit some other very interesting and maybe even surprising dynamics, which will be of
particular interest later on, when we formulate more abstract neuron models. Whether
these features are of any computational relevance is an important topic of ongoing debate.

Let us first turn our attention towards the “spiking threshold”. Does there exist a value
of the membrane potential which, once reached, guarantees that the neuron will spike?
As we can see from Equation 2.8, one can control the equilibrium value of the membrane
potential by varying the external input current I, thus allowing to define a “threshold
current” that is analogous to a threshold potential, should one exist. Medical dictionaries
define the so-called rheobase as the minimal electric current required to excite a tissue
given an indefinitely long time during which the current is applied.

12 Note that already in the deactivated state, individual n gates have a significant probability (p =~ 0.3)
of being open. However, for a channel to be permeable, all gates have to be open at the same time,
the probability of which scales with p* and is therefore much lower.
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Figure 2.6.: Searching for the rheobase of an HH neuron (and not finding it). When
stimulated with a step current of 7pA/cm?, the neuron goes into a regular
spiking mode (blue curves). If one increases the current slowly enough, one
can reach double that value (and, in principle, any value) without triggering
a spike response (red curves).

Figure 2.6 shows an HH neuron stimulated with a step current which is strong enough
to trigger persistent spiking while it remains on. Following its definition, one must assume
that the rheobase is smaller or equal to the applied stimulus. However, if one increases
the input current slowly, even at double the value of the previous stimulus, no spike
is triggered. Indeed, if the input current is increased slowly enough, one can converge
smoothly to any membrane potential value. Even for step currents, there is no clear
threshold for which spiking is initiated. When decreasing the step value with fine enough
granularity, the neuron responds with an increasing delay, with a spike of decreasing
amplitude (not shown here).

This goes to show that HH neurons do not have a firing threshold in the precise mathe-
matical sense. While the threshold assumption may be a very practical one!'3, as we shall
discuss later in Section 2.2.1, it is important to keep in mind that it is a mathematical
abstraction of an otherwise different physical phenomenon. In compliance with common
terminology, we will nevertheless use the terms “suprathreshold” and “subthreshold” when
describing regimes where a neuron fires or does not fire, respectively.

Another interesting phenomenon is the so-called (post-)inhibitory rebound. When stim-
ulated (inhibited) by a negative current, the membrane potential naturally drops below
Ey. If the stimulation ends abruptly and the inhibitory current was long and strong
enough, a single spike can be elicited (Figure 2.7). The explanation for this behavior lies
again in the difference between the time constants of gate dynamics. The temporarily
low membrane potential results in a stronger deactivation of the K* channels (n gates)
and a weaker inactivation of the Na™ channels (h gates). Upon the abrupt termination
of the inhibitory stimulus, the membrane is pulled back towards Ej, but the fast m gates

13 See also Kistler et al. (1997) for a similar discussion related to a different type of simplified neuron
model (the spike-response model).
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Figure 2.7.: Inhibitory rebound of an HH neuron. Given a high enough amplitude, both
excitatory (blue curves) and inhibitory (red curves) stimuli can cause a spike
in the HH model, if their onset (in the excitatory case) and end (in the
inhibitory case) are quick enough.

open quicker than the other two gate types can react to the change in voltage, causing an
overshoot, which, when large enough, leads to spiking.

This effect is impossible to account for in neuron models governed by a single, first-order
ODE, which possess a resting potential (stable fixed point of u). The extremely popular
LIF model, discussed in detail in Section 2.2.1.1, is one such example. This is one of
the reasons why neuron models of intermediate complexity have been developed and are
being used for modeling cortical function. We point to Sections 2.2.1.2, 3.3.1 and 5.5 for
further elaboration on this topic.

The third and final phenomenon we shall address here is resonance. It is similar to
the inhibitory rebound in that it is also caused by the different timescales on which gate
dynamics evolve and it can also not be reproduced with first-order, single-ODE models.
When stimulated periodically with a current of an amplitude that would otherwise not
elicit a spike, an HH neuron can be provoked to fire, as shown in Figure 2.8. This
happens only if the pulse frequency of the stimulus is close to a specific value for the given
neuron, hence the denomination of the effect. As shown in e.g. Izhikevich (2007), in vitro
recordings of cortical neurons also show rebound and resonant spiking.

2.1.3. Synapses

After having discussed the individual dynamics of the fundamental building blocks of
neural networks, we now turn to the other key ingredient in neural information processing:
the interneuron interaction.

When the membranes of two neurons lie in close proximity to each other'?, a so-called

1 More precisely, where the axon of the presynaptic cell touches a dendrite of the postsynaptic cell. See
Section 2.1.4 for more details on neuron morphology and its functional consequences.
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Figure 2.8.: Resonance phenomenon in the HH model. If an excitatory stimulus is too
weak, it may not trigger a spike (blue curves). However, a pulsed stimulus
with the same amplitude and correct frequency (which depends on the model
parameters, especially the gating variable time constants), can cause a reso-
nance phenomenon where the driven oscillations of the membrane lead to an

AP.

synapse can form, enabling the transmission of electrical signals between the two cells.
Through a synapse, a spike of the presynaptic neuron can elicit a temporary change in
the membrane potential of the postsynaptic cell called a PSP'. Depending on whether
the PSP has a positive (excitatory) or negative (inhibitory) influence on the membrane
potential, it is also called an EPSP or an IPSP, respectively. Two fundamentally different
types of synapses exist: electrical and chemical ones.

Electrical synapses are very simple in their structure. In an electrical synapse, the
neuron membranes are separated by a narrow space called a gap junction or synaptic
cleft, which is several nm wide. At the site of the gap junction, the membranes contain
numerous junction channels called connexons, which can be thought of simply as pores
that connect the cytoplasm of the two cells. These channels are wide enough to allow the
passage of all relevant charged ion types (among others), thereby enabling the passive flow
of ionic currents and thus the transmission of electrical signals. Electrical synapses are
therefore very fast, with synaptic delays (time lag between the arrival of the presynaptic
spike and the onset of the PSP) on the order of 0.2 ms. They also allow signal transmission
in both directions. However, despite their distinct speed advantage, they only represent
a distinct minority of synapses in the neocortex. One reason might be that due to their
simple structure, they lack the versatility and plasticity of chemical synapses.

Chemical synapses, on the other hand, have a distinctly asymmetric structure. The pre-
synaptic terminal, or synaptic bouton, contains specialized transmission molecules called
neurotransmitters. These are enclosed in so-called vesicles, spherical formations about

15 Which stands for “postsynaptic potential” and is therefore a rather unfortunate acronym for something
representing a temporary change in the latter.
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Figure 2.9.: Electrical synapse. In an electrical synapse, cell membranes are separated by
an extremely narrow synaptic cleft. Special transmembrane proteins called
connexons bridge the synaptic cleft and allow the passage of, among others,
charged ions. Electrical excitations of the presynaptic membrane can thereby
propagate passively to the postsynaptic membrane. Image taken from Purves
et al. (2001).

40nm in diameter surrounded by a plasma membrane. Vesicle membranes contain a
particular type of protein which, when activated by Ca™™ ions, causes the fusion of the
vesicle to the cell membrane. When the presynaptic cell fires, the AP causes the opening
of voltage-gated Cat™ channels, thereby creating an influx of Ca™™ ions into the synaptic
bouton. The resulting high Ca™™ concentration causes the vesicles lying in the proximity
of the cell membrane to fuse with it, releasing their contents into the synaptic cleft. The
released neurotransmitters can now freely diffuse throughout the synaptic cleft, which
is about 20 nm wide, reaching the postsynaptic terminal within several ms (and making
chemical synapses an order of magnitude slower than electrical ones). At the postsynaptic
terminal, the target neuron membrane contains a high density of receptor proteins called
ligand-gated ion channels, which change their conformation in the presence of particu-
lar molecules. The neurotransmitter molecules cause the opening of these ion channels,
creating an influx of charged ions into the postsynaptic cell. Formally, this amounts to
an increase in (postsynaptic) membrane conductance for a specific ion type and is conse-
quently dubbed a PSC!. This, in turn, elicits a PSP on the postsynaptic membrane. Due
to Brownian motion and enzymatic metabolization, the transmitter molecules eventually

6 Coincidentally, the abbreviation “PSC” can stand for either postsynaptic current (generated by the
influx of ions through the ligand-gated ion channels) or postsynaptic conductance. The reader is
therefore encouraged to pay particular attention to the context in which this acronym appears.
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Figure 2.10.: Chemical synapse. When the presynaptic neuron fires, the elevated mem-
brane potential at the presynaptic terminal causes voltage-gated Ca™™ chan-
nels to open, creating an influx of Ca™™ ions. These bind to vesicles contain-
ing neurotransmitter molecules, causing them to fuse with the cell membrane
and spill their contents into the synaptic cleft. The diffusing neurotransmit-
ters eventually reach the postsynaptic terminal, where they activate specific
receptors in the postsynaptic cell membrane, which in turn allow the pas-
sage of charged ions, thereby eliciting a PSP. Eventually, the neurotrans-
mitter molecules break loose from the receptors and are reabsorbed by the
presynaptic cell for re-release. Image modified from Knodel (1998).

break loose from the receptors, returning them to a closed state and ending the PSC.
The freed neurotransmitter molecules or their metabolites can then be reabsorbed and, if
necessary, reconstituted by the presynaptic terminal and enclosed in new vesicles, thereby
becoming available for future release.

If multiple spikes arrive in close succession, their effects on the membrane conduc-
tance/current are summed up (aside from short-term saturation/depletion mechanisms,
which will be discussed in Section 2.2.2.2). The same is true for PSCs arriving from
different synapses. Since the neural membrane integrates over its inputs, PSPs sum up
as well, both temporally (over different spikes) and spatially (over different synapses).

The various steps and components of this complex chain of events have many profound
functional consequences.

The use of neurotransmitters as intermediates requires their metabolization by the
presynaptic neuron. Therefore, it appears reasonable that every neuron releases the same
set of neurotransmitters at each of its efferent synaptic sites. This principle, coined by
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Figure 2.11.: Simulation of synaptic events. A single neuron is stimulated by an excitatory
and an inhibitory presynaptic partner. Their spikes cause changes in the
membrane conductance: red for excitatory (towards Ey,+) and blue for
inhibitory (towards Fy+). Despite the two synapses having the same weight
(as can be seen from the equal height of their PSCs), the inhibitory PSPs are
significantly smaller than the excitatory ones due to the membrane potential
lying much closer to Ey,+ than to Ex+. When synaptic events arrive in
quick succession, both temporal and spatial summation of their effects can
be observed. Even when PSCs are too far apart to superpose, PSPs may still
do so, due to the relatively long membrane time constant. A more detailed
understanding of these phenomena, we point to the section on mathematical
models of synaptic interactions (Section 2.2.2) and the analytical solution of
the membrane potential equation (Sections 4.2.1 — 4.2.4).

John Eccles in 195417, is known as Dale’s law, and remains until today an important rule
of thumb with only few known exceptions.

The receptors activated by particular neurotransmitters are only permeable to specific
ion types. Depending on whether channeled ions increase or decrease the neuron mem-
brane potential, receptors can be classified as either excitatory or inhibitory. The two
major neurotransmitters in the mammalian CNS are glutamate and GABA, which pref-
erentially target excitatory and inhibitory receptors, respectively. Therefore, and as a
corollary of Dale’s law, depending on whether a neuron is glutamatergic or GABAergic,
it can be either excitatory or inhibitory, but usually not both at the same time.

Given that communication at chemical synapses happens through diffusion, a fraction
of the released neurotransmitter molecules can escape the synaptic cleft and diffuse freely

17 There has been quite some historical controversy surrounding the precise wording of Dale’s law. It
concerns the ambiguity of the original statement from 1954 about whether one neuron may release
multiple types of neurotransmitters at its terminals (Eccles et al., 1954). A revised version that is in
compliance with today’s knowledge has been formulated by Eccles in 1976: "I proposed that Dale’s
Principle be defined as stating that at all the axonal branches of a neurone, there was liberation of
the same transmitter substance or substances." (Eccles, 1976)
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into the intercellular medium. These can then affect neighboring neurons non-synaptically
in various ways, triggering complex metabolic pathways that may, in turn, cause profound
changes in the dynamics of the neural network. This capability of neuromodulation gives
chemical synapses far-reaching functional control over a wide range of temporal and spatial
scales, much in contrast to their electrical counterparts.

Due to the complexity of the neurotransmitter release-reuptake-cycle, synaptic trans-
mission can vary over time in various ways. It can either be subject to intrinsic dynamics,
such as a gradual weakening of the synapse due to vesicle depletion, or be influenced
externally by e.g. the firing of the postsynaptic neuron. This phenomenon, called synaptic
plasticity, can obviously carry deep functional consequences for any network of spiking
neurons. As such, it plays an essential role in learning, adaptation, memory formation
etc., and is therefore a key component in neural modeling.

Because of their complexity, synaptic dynamics are rarely modeled in full detail. Es-
pecially when it comes to plasticity, models become increasingly phenomenological and
less mechanistic. Many famous models of synaptic plasticity, such as the Hebb and BCM
rules, have been originally formulated as firing-rate dependent and are therefore not easily
implementable in spiking neural network models. Section 2.2.2 will address the modeling
of synaptic transmission and plasticity in more detail.

2.1.4. Spatial Structure of Neurons

Until now, we have only considered the dynamics of structureless, pointlike neurons. The
structure of neural cells is, however, important for two reasons. First and foremost, the
structure of a neuron can have a profound impact on the way it processes inputs from
other neurons. Secondly, the interplay of membrane morphology and electrochemistry
leads to a preferred directionality in the transmission and processing of information.

A sketch of the functionally most relevant structural components of a neuron can be
found in Figure 2.12. A characteristic feature of a neuron is the branching tree of dendrites
that grow out of the cell body or soma. Synaptic stimuli generate electrical excitations of
the cell membrane that travel across the dendrites towards the soma. Projecting out of
the soma is a single so-called axon, which is usually longer and thicker than the dendrites.
At the junction between soma and axon, also called the axon hillock, the ion channel
density is particularly high, making it the area most likely to trigger an AP. The AP then
travels along the axon towards terminals connecting it, via synapses, to other neurons,
through which it can impinge on their respective membranes.

An AP that has been initiated at the axon hillock can only move away from the soma,
which we shall henceforth label as the forward direction. The reason for this lies within
the very mechanisms that generate the AP described in the previous section. While
the leading edge of the spike moves forward due to the activation of Nat channels, the
trailing edge does so due to the inactivation of the Na™ channels and activation of the K+
channels. Thus, at any point in time, the membrane excitation can not move backwards
due to the Na™ channels towards the soma having already been inactivated.

Let us now consider a simple model for the propagation of electrical signals along
the neural membrane. The so-called cable theory dates back to the work by Thomson
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Figure 2.12.: Sketch of a neural cell. The cell nucleus resides in the cell body or soma.
Thin, branching projections called dendrites gather information from affer-
ent neurons. Spikes generated by this neuron are transmitted to efferent
neurons via the axon, which is surrounded by a myelin sheath for faster sig-
nal transmission via saltatory propagation, from one node of Ranvier to the
next. Dendrites of target neurons dock via synapses at the axon terminals.
Modified from http://en.wikipedia.org/wiki/File:Neuron Hand-tuned.svg.

(Lord Kelvin) from the 1850s, and was initially developed to model signal transmission
in submarine telegraphic cables. We will not provide a full mathematical derivation here,
since it is only of peripheral interest to the present work (see Section 5.3), and recommend
Chapter 2.5 of Gerstner and Kistler (2002) instead, which features an in-depth discussion
of the cable equations.

Neural cable theory assumes, in a first approximation, that all components of the
neuron (dendrites, soma, axon) transmit electrical signals passively. The radius of the
“neural cable” is modeled as constant and, at any point on the membrane, incident
currents are assumed to sum up linearly. These are indeed very crude simplifications
of neural electrophysiology'®, but the mathematical tractability gained from sacrificing
biological fidelity yields important insights into the effects of spatial structure on the
propagation of electrical signals, which obviously has functional implications for neural
information processing. We consider it crucial to accentuate this aspect, especially given
the fact that, as we shall see later, network models very often do not take into account
the full consequences of neural morphology.

18 As we have seen in Section 2.1.2, active (voltage-gated) channels on the membrane are a major
component of membrane dynamics, even in the subthreshold regime. Dendrites also become thicker as
they join and approach the soma, with the soma diameter being many times larger than that of distal
dendrites. Finally, transmembrane currents do not sum up linearly, as the transmembrane proteins
are not ideal resistors.
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Figure 2.13.: The neuron membrane can be viewed as being composed of infinitesimal
segments dz, each of which contains a longitudinal resistor rdz and a leak
circuit, which consists of a capacitor ¢y,dz and a resistor ry, /dx connected in
parallel. Due to gauge freedom one can set the voltage of the cell exterior,
represented by the bottom horizontal wire, to zero (ground). The cable
equation can be found by applying Ohm’s law over the longitudinal resistive
element and Kirchhoff’s current law at a node along the inner cell membrane
(top horizontal wire).

In classical cable theory, the membrane acts as a sequence of infinitesimal RC circuits
connected in parallel (Figure 2.13). Here, mdz represents the longitudinal resistive element
and ry, /dx and cpdr the transversal resistive and capacitive elements, respectively. The
latter are equivalent to 1/g; and Cy,, which have been discussed in Section 2.1.1. External
currents that excite the membrane are subsumed under the notation i®**dx. Note how
the additive rules for resistors, capacitances and currents lead to the factors “- dz” and
“/dx”, depending on whether they are connected in parallel or in series. The infinitesimal
elements we use here are measured per membrane-length unit (and hence [ry] = Qm,
[r] = Q/m, [c] = F/m and [i*'] = A/m).

Without loss of generality, we can assume the resting potential of the membrane to be
0. The longitudinal current through the membrane i(¢, z) causes a voltage drop over the
longitudinal resistance ridx of

u(t,z) —u(t,z + dx) = i(t, z)rdx. (2.9)

The current flowing through the infinitesimal RC circuit at point « is the sum of the current
that charges the capacitance cpdz and the one flowing through the resistor ry, /dz:

t
ifC(t, x) = cmdxgtu(t, x)+ :fri/’;; (2.10)
Conservation of current at point  demands that
i(t,x + dx) —i(t,z) — i (t, z)de + i7C = 0. (2.11)
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In the limit of dz — 0, we can rearrange equations such that we can substitute
“(t’x+d$_“(t’x) and Z(t’x+djx)_l(t’m) by a“éi’x) and alg;x), respectively. As a final step, we
can now substitute Equations 2.9 and 2.10 into Equation 2.11 (and drop the arguments

x and t for clarity). The cable equation describing this system then reads

1 0%u ou U
o =gyt 212

By setting Ay = /rm/71 (the so-called electrotonic length scale) and 7, = rpen (the
membrane time constant, see also 2.3), we can rewrite equation 2.12 as

on_
ot

0u oxc
)\m2@ +u = i, (2.13)

Tm

Each of the two specific constants in this equation describes an intuitive property of the
membrane. Assume, for instance, that we inject a constant current (¢, z) = §(x)/rm at
x = 0 and wait until the membrane potential does not change anymore in time. Equation
2.13 then becomes
0%u B
0x2

and we can find the stationary solution

Am® u— () (2.14)

u(z) = %exp (-’i‘l) . (2.15)

It now becomes apparent that the electrotonic length scale Ay, is a measure of the atten-
uation of an input signal along the membrane. More precisely, it represents the length
after which a stationary signal becomes weaker by a factor of 1/e.

Similarly, if one injects a current homogeneously along the entire membrane, the spatial
derivative in Equation 2.13 vanishes and we are left with

ou .
Ty = —V + rpi®™, (2.16)

which is exactly equivalent to the pointlike leaky neuron model by Equation 2.3. For a
constant current i**(t) = 1/r,,0O(t), we can easily write down the solution

t

u(t) = O(t) [1 — exp <—>} (2.17)
Tm

and see that the membrane time constant 7, is a measure of the reaction speed of the

membrane to changes in stimulus.!? Similar to Ay, it represents the time after which the

membrane gets closer to its new equilibrium value by a factor of 1/e.

!9 For a dendrite with a radius of 1 um, we can find typical values of 1} = 3-10° Q/um, 7, = 5-10" Qum
and ¢y = 5- 107" F/um. The corresponding electrotonic length scale and membrane time constant
are A\pm = 1.2mm and 7, = 25 ms.
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Figure 2.14.: Special solutions to the cable equation. The membrane potential is given in
arbitrary units, as we are only interested in the shape of the curves. Left:
stationary solution with respect to time. A constant current is applied at
a single point x = 0 along the membrane. The membrane potential decays
exponentially as a function of distance to the point of injection, with a
decay constant equal to the electrotonic length scale A\y,. Right: stationary
solution with respect to space. All points along the membrane receive the
same current, which in this case is a step function at ¢ = 0. The membrane
potential decays exponentially towards the new equilibrium value, with a
decay constant equal to the membrane time constant 7y,.

We can now search for analytical solutions to the cable Equation 2.13. In order to
promote an intuitive understanding, we note how, although it appears here in the con-
text of electrodynamics, this type of PDE is found in many areas of physics, including
thermodynamics and quantum mechanics. It is closely related to e.g. the Fokker-Planck
(a.k.a., depending on context, Smoluchowski) and Schrédinger equations. This already
gives us a strong hint that dispersion (i.e., spreading of wave packets) plays an important
role in the time evolution of membrane excitations. We need to stress, however, that the
cable equation does not describe a diffusion process and is only formally similar to one.
A detailed discussion of the Fokker-Planck equation as a formalization of a true diffusion
process is, however, of central importance to the behavior of neurons driven by stochastic
stimuli and shall be discussed in detail in the context of stochastic neural computation

(Chapter 6).

The general approach to solving linear PDEs such as the cable equation is by using the
Green’s function formalism. For a generic linear PDE

Lu(t,x) = f(t,x) (2.18)

with an arbitrary linear differential operator £ = L(z,t), the Green’s function G(t, ', z, z')

29

dispersion

Green’s
function



2. Introduction: From Biological Experiments to Mathematical Models

is defined as the solution to
LGt z,2") =8t —t)d(x —2). (2.19)

It can be easily checked by substitution that the general solution of the PDE is given by

t oo

u(t,x) = / /G(t,t’,m,m’)f(t',x')dt’dm’. (2.20)

—0o0 —O0

In particular, if £ is translation invariant (as it is in our case), G serves as a convolution
operator for Equation 2.20:

Gz, o' t,t') =Gz — 2/, t — 1) (2.21)

In the following, we will drop all parameters from Equation 2.13 for clarity. This can
be done by rescaling time and space to unit-free coordinates

T =/ Am (2.22)
t—t/Tm (2.23)

and by additional rescaling of the external current

S Y A (2.24)
The cable equation then becomes
ou  0%u ext

and the Green’s function can be given in closed form:

ot —1t) exp | —(t — 1) — (v —a')?

Gt z,2) = ——= w=r)
( :L’LU) 471'(75—15’) 4(t—t,)

(2.26)

Let us consider a synapse lying at a location that we define as x = 0 along a dendrite.
Upon arrival of an afferent spike, the current that flows through the synapse and excites
the membrane can be modeled as

i(t, z) = w5 (2)O(t) exp [— Tstyn} . (2.27)
If we neglect boundary effects, we can plug Equations 2.27 and 2.26 into Equation 2.20
to find out how this signal propagates along the dendrite (Figure 2.15).

As expected, we observe the formation of the characteristic PSP shape at the point
of injection (blue curve). The steepness of the rising flank is partly determined by the
synaptic time constant 7" while the falling flank is largely governed by the membrane
time constant 7,. At points lying further away on the dendrite, however, the PSP
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Figure 2.15.: Propagation of membrane potential excitations. The neural cable is excited
by a simulated synaptic current with a sudden onset at ¢ = 0 and an expo-
nential decay with time constant 7Y" = 7,,, /5 at the point = = 0 along the
membrane. The time course of the membrane potential (PSP) is measured
at integer multiples of half the electrotonic length scale Ay /2. Two char-
acteristic dispersive effects become apparent. The amplitude of the PSP
decreases and it becomes broader as it propagates away from the current
injection site. In addition, the rising flank becomes less steep and the peak
voltage is reached later, amounting to an effective dendritic delay.

becomes distorted - the peak voltage is reached later, due to the finite propagation speed
of electrical signals along the membrane. Loosely defined as the speed at which the
voltage peaks advance, the signal propagation speed is, quite intuitively, a monotonically
decreasing function of 7, and a monotonically increasing function of A,. Additionally,
the further away one goes from the point of injection, the smaller the peak voltages
become, reflecting the previously discussed effect of the electrotonic length scale.

We now turn our attention to the propagation of action potentials. By their very
nature, it is no longer possible to neglect the active mechanisms that govern their time
course. Their propagation is therefore determined by a combination of the passive cable
theory from above and the voltage-gated channels from the Hodgkin-Huxley model (Sec-
tion 2.1.2). However, the results we have gained from studying the behavior of purely
passive dendrites can give us some important insights.

In order for an AP to propagate from position x further along the axon, it must elicit
a high enough voltage change at the position x + Ax for the active mechanisms to take
over and cause an AP at this new position. The reaction speed to stimuli at any point
along the membrane is governed, as we have seen (in e.g. Equation 2.17 or 2.14), by the
membrane time constant 7, and the electrotonic length scale Ay,. A fast propagation
of action potentials towards their target neurons (as would e.g. be required by a quick
reaction of the animal to a sensory stimulus) can be aided by two morphological features
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of axons, both of which have the effect of increasing Ay,.

One straightforward possibility is to increase the diameter of the axon. The total
surface area of the axon would grow, allowing more charge to flow through per unit of
time, but also requiring more charge per unit of voltage. This would lead to a decrease
in ry but also to a simultaneous increase in ¢y, thereby leaving 7, unaffected. However,
the longitudinal resistance r; would also be reduced, leading to an increase in Ay and
thereby increasing the passive signal propagation speed. Evolution has put this effect to
use, as famously illustrated by the millimeter-thick giant squid axons on which Hodgkin
and Huxley performed their Nobel-earning experimental work.

However, particularly in younger taxa’, evolution has found a more efficient solution.
Especially those neurons which require long axonal projections, such as motor neurons
which project from the spine to the extremities, have their axons surrounded by a so-called
myelin sheath. The myelin is produced by specialized glia called Schwann cells that wrap
themselves around the axon in multiple layers, effectively increasing the thickness of the
membrane. This decreases the membrane capacitance, but more importantly, it greatly
increases the resistance across the membrane. This, in turn, leads to an increase in Ay,
and thereby to a faster signal transmission. Between the Schwann cells there remain some
unmyelinated axon surface patches, called the nodes of Ranvier. At each such node, the
voltage-gated proteins have access to the intercellular medium and can therefore actively
“refresh” the AP by the Hodgkin-Huxley mechanism. Due to the “jumping” nature of the
APs, their propagation along a myelinated axon is called “saltatory”.

The interplay between active and passive transmission also determines the direction-
ality of the AP propagation. Having reached some point along the axon, the AP can
not propagate backwards, because those patches of axon membrane lying behind have
already been excited and then remain refractory for a significant period of time.

What about the propagation of action potentials from the axon hillock backwards
through the dendritic tree? Even without voltage-gated ion channels, APs can still
backpropagate by passive transmission only. Moreover, if dendrites are equipped with a
high enough density of such channels, the AP propagation should be, in principle, quite
similar to the one in unmyelinated axons. Indeed, both varieties of backpropagating APs
have been found to occur in nature (Waters et al. (2005)). They have been hypothesised
to play a significant functional role as well, allowing a sort of feedback mechanism for
synaptic plasticity phenomena that require the “knowledge” of both afferent and efferent
spiking activity. One such mechanism, called STDP, will be briefly addressed in Sections
2.2.2.2, where we discuss synaptic plasticity.

We conclude this section with several important remarks. Since spike initiation is quite
narrowly localized in space - at the axon hillock - it is both the shape and the timing of
the PSPs at that precise site that determines whether the neuron spikes or not. We have
seen how these PSP features strongly depend on the position of synaptic current injection,
as well as the membrane properties of the dendritic tree (in particular, Ay, and 7,). We

29 Tt is noteworthy that myelination can also be found in some older taxa as a result of convergent
evolution. While not morphologically identical, invertebrate myelin sheaths serve the same functional
purpose as in vertebrates.

32



2.1. Morphology and Electrophysiology of Biological Neurons and Synapses

therefore conclude that the morphology of a neural cell is essential to the information
processing that it performs. The position of a synapse can, for example, influence both
delay-based computation, which is essential in e.g. synfire chain models (see Section 5.4),
as well as PSP size and shape, which determines functionality in virtually all network
models.

As we shall see in the section on simulation software (3.1), dendritic delays can be
taken into account for point neuron models, but not morphology-dependent PSP shapes.
Modeling the full structure of the dendritic tree would be computationally costly, while
also severely limiting the analytical tractability of network dynamics. It is precisely due
to their analytic and computational tractability that the remainder of this work is largely
dedicated to point neuron models. We therefore need to point out that while the im-
plementation of algorithms in neural networks from a machine learning perspective does
not require biological fidelity, any claims about biology coming from single-compartment
modeling must be treated with appropriate care and rigor.
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2.2. Abstract Models

At this point, we have formulated a mathematical model of biological neuron dynamics
and have given an approximate description of synaptic interaction. In its full complexity,
our neuron model (Hodgkin-Huxley equations plus the cable equation) is computationally
extremely costly, with 4 ODEs for the soma and 1 ODE for each dendritic compartment
that is modeled as a single cable (assuming a spike can only be triggered at the soma).
Synapse dynamics are even more complicated; modeled in full detail, each synapse would
require multiple ODEs for neurotransmitter release at the presynaptic site, diffusion in
the synaptic cleft, ligand-gated channeling at the postsynaptic site, neurotransmitter me-
tabolization etc.

If we are to simulate neural networks at the level of individual neurons and synapses, a
small set of simple, linear ODEs would be highly advantageous. Simplification, of course,
comes at the price of accuracy — or worse, at the expense of functionality, as we have
already discussed for the HH model (Section 2.1.2). The formulation of abstract models
therefore always requires a careful consideration of the tradeoff between functionality
(and/or faithfulness to biology) and computational complexity.

In the following, we will elaborate the neuron and synapse models that have been used as
building blocks for all the network models discussed in later chapters. Furthermore, these
models define the target dynamics of the circuits implemented in our neuromorphic hard-
ware. In Section 2.2.1, we will address simplifications of the HH equations and formulate
two abstract neuron models: the simple leaky integrate-and-fire model as a stripped-down
version of the HH neuron and the more complex adaptive exponential integrate-and-fire
model, which even includes dynamics beyond the HH equations. In Section 2.2.2, we will
formalize synaptic dynamics and discuss two simple models of synaptic plasticity.

2.2.1. Neurons

As already addressed in Section 2.1.4, the first simplification we make is to utterly neglect
signal propagation in the dendritic tree. We assume our neurons to be pointlike, so all
input currents have an immediate effect on the membrane potential of the (pointlike)
soma. However, the distance of a synapse from the soma, i.e., the dendritic delay, can
still be taken into account. Here, we model the delayed arrival of PSPs at the soma by
delaying the arrival of spikes. In both cases, the result is a temporal shift of the PSP
incidence at the soma; however, in this model, we lose the (potentially computationally
relevant) reshaping of the PSP as a function of the distance it travelled.

In a second step, we reconsider the equations of the HH model, which had been moti-
vated by the desire to have a mechanistic model of the biological dynamics in excitable
cells. In particular, most of the model complexity serves almost exclusively for modeling
action potentials: the voltage-gated channel dynamics effectively make up three (Equa-
tion 2.6) of the four ODEs — and most of the fourth (Equation 2.8) as well. However,
spikes are generally assumed to be stereotyped events, i.e., with nearly identical shape
(Gerstner and Kistler (2002), Dayan and Abbott (2001)). Under this assumption, it
is only the timing of the individual spikes that matters, thereby rendering its detailed
modeling redundant.?! In many simplified neuron models, the spiking mechanism is

21 Tt is important to remember that this, too, is a simplification and does not hold without exception.
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therefore replaced by a threshold condition: when a neuron’s membrane potential reaches
the said threshold at time ¢4, it is instantaneously pulled back to a reset value and the
neuron “sends a spike” to its efferent neurons. These spikes are typically modeled as a
delta function of time. We discuss such a model in Section 2.2.1.1.

One needs to remember, however, that the reduction in the number of equations of
motion (and the accompanying reduction of the system’s phase space spanned by its
dynamic variables) invariably leads to a loss of “dynamic richness”.?? In particular, it is
impossible to reproduce the driven-oscillator-like subthreshold dynamics of the HH model
(see the end of Section 2.1.2) in a one-dimensional space. To what extent this results in a
loss of computational functionality depends on the network model. In any case, networks
based on one-dimensional neuron models can still exhibit extremely interesting dynamics
(Chapter 4) and perform complex computational tasks (Chapter 6).

Evidently, the simplified one-dimensional model class outlined above does not need
to be the end of the path of abstraction. Indeed, the basic?® HH model has its own
shortcomings and can not capture the entire observed spectrum of single-neuron behavior.
This can, however, be remedied by the inclusion of additional dynamic variables which, for
example, influence subthreshold dynamics on longer timescales. We shall discuss in detail
two network models that rely on 2D neuron dynamics in Chapter 5. Their underlying
neuron model is described in detail in Section 2.2.1.2.

2.2.1.1. The Leaky Integrator

The leaky integrate-and-fire (LIF) model is one of the simplest neuron models that can
claim biological relevance. It is almost as old as modern neuroscience itself (Lapicque,
1907), although its name was introduced only about half a century later (Brunel and
Van Rossum, 2007). The name basically says it all, and we have already discussed the
differential equation of this model in the section on passive membrane properties (Equation
2.3). A (4 x —u)-term represents the leak, whereas the integration of the input current
is embedded via @ o I:

du

Cmﬂ

= (B —u) + I 4 190 (2.28)
Here, we have subdivided the total input current I into a synaptic component Y™ and
a generic external one I®*. The latter gives additional control over the model and is
equivalent to a modulation of E;. The firing is taken care of by a simple threshold rule:

While most neocortical neurons appear to conform to this assumption, networks exist — e.g., in the
elephantnose fish — in which different shapes of action potentials have been measured (Sugawara et al.,
1999) and hypothesized to play a functional role (Mohr et al., 2003a,b).

As an example, we mention the Poincaré-Bendixson theorem, which makes a statement about the
periodicity of orbits (limit cycles) for two-dimensional dynamical systems. In particular, it forbids
the existence of chaotic behavior such as strange attractors. This clearly does not hold for higher-
dimensional phase spaces, such as the Lorenz system with its well-known “butterfly attractor”.

Le., with additional dynamics that only cover the generation of action potentials - as described in
Section 2.1.2 and defined by Equations 2.6 and 2.8 with the parameters from Section A.2.1

22
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if the membrane potential crosses a threshold ¥ from below??, a spike is emitted:
neuron spikes at t = tgpike <= U(tspike) = U (2.29)

The outgoing spikes are defined only by the time of their occurrence and form a so-called
spike train, which is modeled as

o) = > 8t —t,)

spikes s

(2.30)

Whenever the neuron spikes, its membrane is reset to a potential p. In order to model
the refractoriness of biological neurons, the membrane is clamped to the reset potential
for a duration 7y called the (absolute) refractory time:

u(tspike <t< tspike + Tref) =0 (231)

The Equations 2.28, 2.29 and 2.31 fully define the LIF model. Despite formally being
described by three equations, it is important to note that the model itself only has a
single dynamic variable, namely the membrane potential u, thus being one-dimensional.
It might seem that the synaptic interactions condensed into I*¥™ offer additional degrees
of freedom, but this is not the case, since I*" is fully determined by the spike trains, and
therefore by the membrane potentials, of other neurons in the network - as we shall see
in Section 2.2.2.

To gain some intuition for this model, we shall briefly describe several simple single-
neuron experiments. In particular, this means that there is no synaptic stimulus, so

" £ 0. The general solution of the LIF equation 2.28 can be easily found:

t

t

e e o)\ o

u(t) = upe o + € /dt’ (El + ( )> e
0

2.32
Tm g1 ( )

If the current remains constant in time, the equation takes an even simpler and more

intuitive form:
Iext Iext e
+ uO - El - € Tm s
aqa g1
Cm

u(t) =k +

(2.33)

where up := u(t = 0) and 7, = represents the membrane time constant (see also
Equation 2.13), which quantifies the relaxation speed of the membrane potential towards
the equilibrium value Ey + I /g,.

If the equilibrium value lies below the spiking threshold (E) + I®t/g, < 99), the current
stimulus is called subthreshold. The time course of the membrane potential then cor-
responds to the charging/discharging of a capacitor. If the equilibrium value lies above
the spiking threshold (E) + I®**/g; > 1), the current stimulus is called suprathreshold.
The trajectory of the membrane potential then remains piecewise exponential, but be-
comes discontinuous, due to the reset when crossing the threshold. Consequently, the LIF

24 This is the standard textbook definition, but in this formulation of the model, the “from below” can
be omitted, since the equations prevent the membrane potential from ever lying above the threshold.
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Figure 2.16.: Membrane potential of an LIF neuron with step current stimulus. The mem-
brane potential always converges exponentially towards the equilibrium value
E) + I™'/ g, with a time constant 7, = %. During subthreshold stimula-
tion (blue), the membrane follows the charge/discharge curve of a capacitor.
During suprathreshold stimulation (red), the neuron spikes regularly with a

rate given by Equation 2.36.

neuron fires periodically, with a firing rate that can be computed by setting appropriate periodic
boundary conditions for Equation 2.33: firing
ug =0 (2.34)
u(T) =1 (2.35)
ext -1
-1 e— k- Igl
S V=(Teet +T) " = | Tyet + Tm In S I (2.36)
a
The firing rate of a neuron as a function of its input - in this case, of the input current
I®* _is appropriately called an f-I curve. The terms gain function and activation function f-I curve,
are often used synonymously in literature. Figure 2.17 shows the f-I curve of two (nearly) gain
identically parametrized LIF neurons, one with and the other without a refractory period. function,
Without refractoriness, the firing rate diverges for large input currents, as the argument activation
of the logarithm in Equation 2.36 approaches unity. The asymptotic behavior can be easily function
found with an appropriate Taylor expansion of Equation 2.36 in (I°**)~!:
Jext 1 9 It
v (1950 ~ - <E1 _ety + ) (2.37)
Tm(ﬁ - Q) 2 g1

The inclusion of a nonzero refractory period enables a more biologically plausible, con-
vergent behavior towards a finite firing rate which, again, follows directly from Equation
2.36:

I*t»00 1
V(IeXt)

(2.38)

Tref

We shall see the activation function reappear prominently in Chapter 6.
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Figure 2.17.: f-I curve of an LIF neuron. Without refractoriness, the firing rate diverges
with a linear asymptotic behavior. If the refractory time is nonzero, the firing
rate converges towards a maximum value of 1/7s. The inset represents a
zoom onto the point of firing initiation. We can see that the firing rate is a
continuous function of time - there is no jump at I** = 0.5 nA. This feature
is characteristic of type I models.

As can be seen in Figure 2.17, the transition from a non-firing (subthreshold excitation)
to a firing state (suprathreshold excitation) is a continuous function of the input current.
This is a characteristic feature of so-called type I models, which display a sharp voltage
threshold and a zero-frequency onset of stable oscillations (regular spiking). In contrast,
so-called type II models do not have a sharp threshold and oscillations start with nonzero
frequency. Two examples, both derived as simplifications of the HH model (which is
itself of type II), are the Connor model for type I (Connor et al., 1977) and the Fitzhugh-
Nagumo model for type II (FitzHugh, 1961); depending on their parameters, some models
can be either (Morris and Lecar, 1981).

It should be noted here that the formal definition of model types varies throughout
literature (see, e.g., Ermentrout, 1996) and there is no clear-cut criterion for classifica-
tion. Some authors define the type of the excitability directly from the f-I curve, in which
case the LIF model is classified as type I excitable. However, most authors discuss this
classification in terms of bifurcation theory (in particular, Hopf vs. saddle-node bifurca-
tions), therefore making it difficult to formally classify the linear LIF model as either type
according to these criteria. For a comprehensive discussion of phase plane analysis, we
refer to Chapter 3 of Gerstner and Kistler (2002).

2.2.1.2. The Adaptive Exponential Integrate-and-Fire Model

Up to here, we have argued from the perspective that action potentials are stereotyped
events with no information contained in their shape but only in their timing. Furthermore,
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we have implied that the LIF model captures the most important aspects of subthreshold
dynamics, rendering any additional terms and equations of the HH model essentially
perturbative. We now reconsider these hypotheses by raising two issues.

Let us first consider the spike initiation of an LIF neuron. Due to the firing condition
(Equation 2.29), the spike timing depends critically on the choice of the threshold. Since
biological neurons do not have such a threshold, the extraction of this parameter from
electrophysiological data is conceivably difficult and prone to error. Even if we loosely
define the “biological threshold” as the initiation point of the membrane potential upswing
during a spike, then clearly the nonlinear terms in the HH equation play an important
role for the membrane dynamics close to this threshold. Such effects can not be captured
by a purely linear model such as LIF.

The second argument comes directly from electrophysiological data. A regular oscilla-
tory behavior, as described above for LIF neurons, is only one of many possible responses
of different neuron types in the cortex to a constant current stimulus (see, e.g., Markram
et al., 2004b). In contrast, both the LIF model and the basic HH model can only pro-
duce constant-frequency oscillations. The adaptive exponential integrate-and-fire (short:
AdEx) model covers both of the above issues - expectably at the price of added complexity.

The issue of spike generation can be addressed by adding nonlinear (current) terms to
the equation that governs the membrane potential. In case of the AdEx model, the added
term is an exponential function of the membrane potential:

- F
JXP — QIAT exp <u AT T) (239)

This term offers two degrees of freedom. The threshold voltage E1 plays a similar role to
the “hard” threshold 1 in the LIF model. Loosely speaking, when the membrane potential
crosses Er from below, I°*P begins to dominate the membrane dynamics, pushing the
membrane potential even further “upwards”. In contrast to the LIF model however, this
is not an all-or-none condition: at any point in time, the positive contribution of the
exponential term can be countered by an appropriate negative contribution from external
stimuli (e.g., inhibitory afferents). The relative strength of I**P is modulated by the
so-called slope factor A1, which is required to be positive.

The more important issue is the one related to spike pattern complexity. This is ad-
dressed by including an additional dynamic variable, the adaptation variable w. It enters
the membrane potential ODE linearly and is itself described by a first-order linear ODE
with jumps upon spiking. Before we address the resulting dynamics, we first write down
the full mathematical description of the AdEx model:

d - F
Cmd—:f = q(E) —u) + glArexp <u T) — w4 YR et , (2.40)
T
Tw% =alu—E)+bryp—w (2.41)

where p(t) represents the neuron’s own spike train (Equation 2.30), and a, b, and 7, are
adaptation parameters discussed below. As these equations still lack a mechanism for
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pulling down the membrane potential following a spike, the reset mechanism of the LIF
neuron is kept in place, albeit with a different, much higher spiking threshold Vypixe:

ZL/spike A u<tspike) = ‘/spike (242)
U(tspike <t < tspike T 7—ref) =0 (243)

Another advantage of the exponential term becomes apparent here. Barring all constants
that can be removed by an appropriate linear transformation of u, the solution to an ODE
of type

pri exp(u) (2.44)

is

u(t) = —log(c—1t) . (2.45)
Once the exponential term becomes dominant, the membrane potential diverges
asymptotically, reaching infinity in finite time (i.e., at ¢ = ¢). Therefore, as long as

the cutoff Vipike is high enough, the spike timing does not critically depend on the precise
choice of Vipie.

As mentioned above, the inclusion of a second dynamic variable is the most important
departure from the simple LIF model. The time constant 7,, governs the rate at which the
adaptation variable w decays back to 0 and is usually on the order of hundreds of ms. The
parameter a determines the influence of the membrane potential on the adaptation; it is
used to, for example, model variations in the ion concentration caused by sustaining either
a high or a low membrane potential. The parameter b represents the quantal increase of
the adaptation variable following a spike, sharing a similar electrophysiological motivation
as a. Since it only comes into play when the neuron spikes, b is used to emulate so-called
spike frequency adaptation (SFA).

Depending on the choice of the parameters a and b, the adaptation variable w can have
both an excitatory and an inhibitory effect on the membrane potential. Very often, a and
b are chosen to be positive, thereby causing a negative adaptation current and therefore
a firing rate that tends to decrease over time. In this case, the adaptation acts as a
homeostatic mechanism on both the membrane potential and the spike frequency of the
neuron. Figure 2.18 shows an example of adapting AdEx dynamics.

More important, however, is the fact that w enables the AdEx model to emulate a
vast array of complex firing patterns, including, but not limited to, the driven oscillations
and the inhibitory rebound spiking we discussed earlier for the HH model (Section 2.1.2).
Figure 2.20 shows an array of typical cortical neuron firing patterns reproduced by an
AdEx neuron with appropriate parameter settings. For a much more in-depth discussion
of AdEx dynamics, we refer to Gerstner and Brette (2009) and Naud et al. (2008).

40



2.2. Abstract Models

Vm (my)

| | | |
0 50 100 150 200 250 300

0.2 - .

w (nA)

D_D i 1 | | |
0 50 100 150 200 250 300

Time (ms)

Figure 2.18.: Exemplary dynamics of the AdEx model with a step current stimulus. The
parameters were chosen to simulate a slowly adapting behavior (i.e., a slowly
decaying firing rate). Top: temporal evolution of the membrane potential
u. The main component of the membrane potential dynamics is the same as
in the LIF model: an exponential decay towards an equilibrium potential, as
seen in the trace segments that precede the spikes. This equilibrium potential
becomes lower over time due to an increasing (negative) adaptation current
—w. When it exceeds the spike threshold (-50 mV), the membrane potential
diverges asymptotically. Bottom: temporal evolution of the adaptation
variable w. The leak component of the adaptation ODE can be easily seen
in the exponentially decaying segments between the spikes. The quantal
increase following each spike causes the jumps in the trace. The dependence
of w on w is a bit more subtle, but it can be seen in the slight increase of w
around 50 ms and the inflection point of the curve around 250 ms. Figure
taken from Gerstner and Brette (2009).
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Figure 2.20.: Eight firing patterns generated by AdEx neurons stimulated by a constant
current. The voltage traces are shown with scale bars that correspond to
100 ms and 20 mV, respectively. Each of the voltage plots is accompanied
by a depiction of the model’s trajectories in the phase plane spanned by u
and w. (The membrane potential u is denoted by V in the plots.)

The locus of states where the temporal derivative of a dynamic variable
is zero is called a nullcline. (Therefore, trajectories always cross nullclines
either vertically or horizontally.) Intersections between nullclines are called
fixed points. As becomes evident from Equations 2.41 and 2.40, the w-
nullcline (green) is a straight line, whereas the u-nullclines (black) are a
superposition of a linear and an exponential component. The wu-nullclines
with and without current stimulation are represented as solid and dashed
lines, respectively.

The neurons are always initialized at their resting state, i.e. at the (stable)
fixed point of the system without current stimulus, which is denoted by a
blue cross. The reset condition causes the trajectories to be discontinuous:
upon spiking, the membrane potential is reset to uyeset and the adaptation
variable is incremented by b. The points where trajectories reenter the phase
plane following a spike are marked by blue rectangles. If this happens more
than once, the first and last point of reentry are accompanied by the index
of the preceding spike.

(a) Tonic spiking.

(b) Adaptation.

(c) Initial burst.

(d) Regular bursting.

(e) Delayed accelerating.

(f) Delayed regular bursting.

(g) Transient spiking. The stable fixed point is indicated with a black, filled
circle.

(h) Irregular spiking.

Figure taken from Naud et al. (2008). The AdEx parameters that were used
for the different firing patterns are given in Table 1 of the paper.
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On a final note, it should be mentioned that the LIF model is a special case of the
AdEx model and can be emulated by an appropriate setting of the parameters Ar, a
and b. Setting a = 0 and b = 0 effectively removes adaptation. The exponential term is
removed by setting A = 0, since

lim zexp(a/x) =" im

(2.46)
x—0,2>0 y—00,y>0 Yy

exp(ay) _ 0 for a<0
oo for a>0

The exponential current then becomes an all-or-none firing condition, rendering Et for-
mally (and numerically) equivalent to the hard threshold ¥ in the LIF model.?

2.2.2. Synapses

As outlined in Section 2.1.3, synaptic interaction is a complex phenomenon, arguably
even more complex than the neuron dynamics themselves. For this reason, few, if any,
detailed? biophysical synaptic models exist. The most widely used synapse models in
computational neuroscience are purely phenomenological: synaptic interactions are mod-
eled by stereotypical functions of time called interaction kernels which sum up linearly
over space (i.e., over different synapses) and time. The total impact of all synapses can

then be written as
=y > wper(t—ts) (2.47)

synapses k spikes s
where wy, denotes the weight or strength of the kth synapse and ¢, its synaptic interaction
kernel. The interaction kernel can, in principle, assume an arbitrary shape, but in most
models it is constrained by the biophysics of synaptic interaction. Before addressing the
exact nature of the synaptic input f*¥", we shall first discuss the shape of the synaptic
kernels €(t).

As described in Section 2.1.3, the synaptic release of neurotransmitters happens very
quickly, as does their diffusion towards the postsynaptic terminal, due to the narrow width
of the synaptic cleft. The removal of neurotransmitters from the postsynaptic terminal,
however, may occur on a wide range of time scales, depending on the nature of the
transmitter and receptor molecules. Therefore, a useful phenomonological model is the

difference-of-exponentials function®7:

1 t t
— A )= - 2.4
6(t> G(t) Trise — Tfall [GXP < Trise > P < Tfall > :| , ( 8)

25 What works well in theory may not be equally unproblematic in practice. Expressions which may con-
verge to finite values, but contain terms that diverge in the required limit, are notoriously problematic
in software implementations. Neural simulation software handles such problems with varying degrees
of success: NEST 2.1.1, for example, returns an error, while Neuron 7.1 returns a warning. Therefore,
when such a limit is required (such as for the L23 model fit in Section 5.3), particular care needs to
be taken. For hardware implementations, such terms become even more problematic, due to limited
parameter precision (see Section A.2.2.2). On the HICANN chip, this issue is solved by having the
exponential term implemented in a separate circuit that can be effectively decoupled from the cell
membrane (see Section 3.3.1).

26 In the spirit of the Hodgkin-Huxley model of neuron/membrane dynamics.

27 Incidentally, this function is identical to the PSP shapes derived in Section 4.2 (Equations 4.39 and
4.59). In order to avoid any confusion, we note explicitly that Equation 2.48 represents a phenomeno-
logical model of PSCs, whereas Equations 4.39 and 4.59 represents the shape of a PSP, i.e., the
analytical solution of the LIF equation driven by a single, exponentially shaped PSC.
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Figure 2.21.: The three different synaptic interaction kernels described in the text. All
three kernels have been scaled to unit area. The time constants were set to
Trise = 2 and g = 7" = 10 (in arbitrary units of time).

where the two exponential functions model the (stochastic) arrival and removal of neuro-
transmitters at the postsynaptic site, governed by their respective time constants 7ise and
Tran. For now, A simply represents a constant factor that transforms € to an amplitude
and units of choice.

Very often, even simpler kernels are used in both theoretical and computational ap-
proaches. In the limit of identical time constants Tyse and 7gy, the interaction kernel
becomes a so-called a-function, as can be easily derived via I’Hépital’s rule:

Trise ™ Tfall =71

lim  e(t) o O(t)t exp <—Tfyn> . (2.49)

The probably most popular synaptic interaction kernel results from the assumption that
the diffusion of neurotransmitters happens much faster than their removal. If one therefore
neglects Tyise, the synaptic interaction kernel becomes a simple exponential function:

lim  e(t) x Ot) exp <_Tfyn> . (2.50)

Trise << Tgall =751

The three kernels discussed above are depicted in Figure 2.21. Equation 2.50 represents
the synaptic interaction model used from here on throughout this work.

Now that we have established the functional shape of the synaptic interaction, we need
to discuss its nature. The neuron model equations discussed in earlier sections (Equations
2.28 and 2.40) may suggest that synaptic transmission is equivalent to current injection
into the membrane. On the other hand, we have explicitly discussed in Section 2.1.3
how (chemical) synapses cause an increase in the membrane conductance for specific ion
types. While the latter is certainly true, arguments can be made for modeling synaptic
interactions as currents. Indeed, both current and conductance-based synaptic models
are widely used in theoretical and computational neuroscience.?® Below, we explain the

28 We point out again that, depending on the context, the abbreviation PSC may refer to either a
postsynaptic current or a postsynaptic conductance.
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Figure 2.22.: Circuit diagram of an LIF neuron with COBA synapses. Incoming spikes
trigger changes in the synaptic conductances towards their respective rever-
sal potential, generating an input current that depends on the momentary
value of the membrane potential.

reasoning behind these models and briefly outline their differences. A much more detailed
discussion is provided in Section 4.2.

2.2.2.1. Current-Based and Conductance-Based Models

Conductance-Based Synaptic Interaction

As outlined in Section 2.1.3, an incoming spike causes a synapse to locally change the
conductance of the neural membrane towards the reversal potential of the ion type its
ligand-gated ion channels are permeable for. Consequently, in this scenario, f%™ repre-
sents a conductance and shall therefore be renamed ¢*¥". Figure 2.22 shows a schematic
of the corresponding circuit.

Here, we need to explicitly differentiate between excitatory (¢2°") and inhibitory (¢*")
conductances, since they “connect” the membrane to different reversal potentials EL*¥ and
Er®V, respectively. Since membrane dynamics are primarily determined by Na® and K™
flows, the reversal potentials are usually chosen as

Eéev == ENaJr and

B = B

(2.51)
(2.52)

We can now apply Ohm’s law to the synaptic conductances in Figure 2.22 to obtain
the total synaptic current

I = gYN (BT ) 4 giSyH(EireV — ) (2.53)

This equation underpins the conductance-based (COBA) synaptic model. Note how the
synaptic current explicitly depends on the membrane potential. By plugging the synaptic
current into the LIF equation (Equation 2.28), we can now obtain the COBA LIF equation:

du

Cm— = g(Er — u) + g7 (B

= — )+ g (B

—u) + I (2.54)

Despite saving a more thorough discussion for later (Section 4.2), we can already point
out several important characteristics of the COBA LIF equation. Firstly, the relationship
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Figure 2.23.: COBA vs. CUBA synapses. Left: PSP saturation as the membrane ap-
proaches the inhibitory reversal potential. The effect is visible for excitatory
PSPs as well, but is much weaker due to the larger distance towards the
excitatory reversal potential. Right: effect of an increased total conduc-
tance. Both the COBA and the CUBA neuron are stimulated with identical
excitatory and inhibitory Poisson spike trains. Despite the dynamic range of
the membrane potential being smaller than in the left plot, the membrane of
the CUBA neuron fluctuates significantly stronger than the one of its COBA
counterpart. This happens because due to the increased total conductance
of the COBA neuron, which leads to a faster membrane and thereby smaller

PSPs.

between the membrane potential and its derivative is no longer determined only by a
constant coupling g; (as it was in the simple LIF equation), but also by explicit functions
of time g and ¢;”". This makes the task of finding a closed-form solution for the tem-
poral evolution of the membrane potential much more difficult (see, in particular, Section
4.2.4). Secondly, due to the dependence on the distance towards the reversal potentials,
summation of PSPs is no longer linear. This is particularly visible for inhibitory PSPs,
where saturation effects can easily appear due to the close proximity of the inhibitory
reversal potential to the dynamic range of the membrane potential. This effect is also
present, albeit less visible, for excitatory PSPs, in particular since the spike threshold
prohibits large depolarizations of the membrane. Thirdly, judging just by the formal
equivalence of the three conductance-regulated additive terms in the COBA LIF equation,
the total membrane conductance ¢*°* = g + 2> + ¢i>" becomes itself a function of time
— and, in particular, larger than g alone (since conductances can only be positive by
definition). Therefore, the “reaction speed” of the membrane given by its time constant
Toff = gctg‘t increases and becomes itself time-dependent. This, in turn, causes the effect
of an incoming spike on the membrane potential to depend on all other spikes received

from all presynaptic partners. Figure 2.23 shows an example of these effects.
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By assuming a particular synaptic interaction kernel, we can now provide a closed-form
expression for the COBA synapse dynamics. With the exponential kernel from Equation
2.50, the excitatory and inhibitory synaptic conductances can be written as

t—ts
g Z Z wO(t — ts) exp(— g ), ze{ei} . (2.55)

syn k spks

The total synaptic current Y™ then becomes

I (t,u) Z Z Z wrO(t — ts)(EYY — u) exp(—t Zyrtls) . (2.56)
T

z€{e,i} synk spks

Current-Based Synaptic Interaction

While the conductance-based nature of chemical synapses is an empirical fact, it does
not necessarily imply that synaptic interaction models must be conductance-based them-
selves. The reason for this non sequitur lies within the spatial structure of neurons (Section
2.1.4). An incoming spike may cause a local change in the membrane conductance, but the
elicited PSP propagates passively towards the soma. The soma therefore only experiences
an incoming current and is not affected by distal conductance dynamics. If one wishes
to use a point neuron model, it is somewhat natural to consider the “point” to represent
the soma, since it is there where the afferent inputs are summed up to generate action
potentials. It can therefore be argued that a current-based (CUBA) synaptic interaction
model is more natural when combined with a point neuron model.

In this scenario, the membrane potential equation remains identical to Equation 2.28:

d
Cmdit‘ = (B —u) + I + 1% (2.57)
With the exponential kernel from Equation 2.50, the total synaptic current can be written

as

I (t Z Z wrO(t —ts) exp(— ! Syi ) (2.58)
syn k spk s
These equations express the fact that, in contrast to the COBA scenario, CUBA PSPs
are summed up linearly and do not otherwise interact with each other. As we shall see
in Section 4.2, this greatly simplifies the analytical treatment of membrane potential
dynamics.

We end this section with a brief explanation of commonly used nomenclature for the
synapse dynamics discussed above. Network models in computational neuroscience rarely
use different types of neuron or synapse models simultaneously. Furthermore, any single
neuron usually has the same dynamics for all of its afferent synapses. As a consequence,
synaptic attributes are often allocated to the used neuron model. Therefore, it is com-
mon to speak of, e.g., “COBA EXP LIF neurons”?’, despite the fact that COBA EXP
characterizes the synapse model and LIF the neuron membrane dynamics.

29 In PyNN, for example, neuron models implicitly characterize their synapse dynamics. This is accounted
for by the typical naming of neuron models, such as, e.g., IF_cond_alpha or aEIF_curr_exp.
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2.2.2.2. Synaptic Plasticity

In living tissue, the coupling strength between neurons is not a fixed quantity, but may
change over time. These variations can be tracked back to morphological changes in their
synaptic connections. which can be broadly classified based on the time scales on which
they occur. In this section, we will only give a brief overview of theoretical models of
synaptic plasticity. In particular, short-term plasticity will play an important role in the
dynamics of the spiking network models discussed in Sections 5.3 and 6.5. For a more
detailed discussion of synaptic plasticity, we recommend “Part three” (Chapters 10-12)
of the textbook by Gerstner and Kistler (2002) and “Part III” (Chapters 8-10) of the
textbook by Dayan and Abbott (2001).

Structural Plasticity

On very long time scales in the order of days to years, neurons in the brain rewire as
a consequence of, e.g., cognitive (learning, memory formation), genetic (aging) or envi-
ronmental (injury, disease) factors. The formation of new connections and pruning of old
ones is called structural plasticity and is mediated by highly complex biochemistry: it
involves not only electrical interactions, but also multiple molecular signalling pathways
(neurotransmitters, genetic factors etc.). While providing a fertile ground for modern
experimental techniques (Caroni et al., 2012), the complex nature of structural plastic-
ity has so far forestalled the formulation of a unified theory, making it a rare sight in
computational and theoretical neuroscience models.

Long-Term Plasticity: Rate-Based Models

On intermediate time scales in the order of minutes to hours, existing synapses may also
change their weight. Depending on whether synapses are strengthened or weakened, one
speaks of long-term potentiation (LTP) and long-term depression (LTD), respectively.3
A well-known rule of thumb for LTP was coined by Donald O. Hebb (Hebb, 2002): "When
an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased." - which is often paraphrased
as “What fires together wires together.” This is commonly referred to as Hebb’s law and
has found its way in many models of synaptic plasticity.

Most mathematical formulations of Hebbian learning rules are rate-based and can gen-
erally be written as

dwij
dt
where w;; denotes the synaptic weight between the presynaptic neuron j and the post-
synaptic neuron ¢ and v; and v; their respective firing rates. In order to account for
Hebb’s law, the function F' usually features a positive dependence on the product of the
neurons’ firing rates. In the rare cases where the dependence is chosen to be negative, the
plasticity rule is called anti-Hebbian.

= F(wijayiyyj) ) (259)

30 Sometimes long-term and short-term plasticity are abbreviated as LTP and STP, respectively. This can
be easily confused with long-term and short-term potentiation and must be inferred from the context,
if necessary. Here, we use “P” as an abbreviation for potentiation and do not abbreviate short-term-
and long-term plasticity.
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The simplest possible rate-based Hebbian learning rule is given by
dwij

dt
For positive ¢ - which conforms to Hebb’s law - synapses are strengthened when both the
pre- and postsynaptic neuron fire. This is also an obvious drawback of this simple model:

synaptic weights increase indefinitely for nonzero firing rates. However, this can be easily
fixed by introducing an upper bound to the learning rate c:

= cvivj . (2.60)

¢ — c(wij) = (W™ —wy)? (2.61)

Still, this model has the limitation that it can not simultaneously account for LTP and
LTD (and neither does Hebb’s original rule). This can, however, be included, by allowing
more complex functions F', along with more complex behavior with various functional
consequences. Below, we list three such learning rules that have enjoyed relative popularity
in theoretical studies.

The so-called covariance rule proposed in Sejnowski (1977) strengthens the synapse if
neural activity is positively correlated and weakens it otherwise:

Wit — = ) s — ) (262)

By adding a quadratic term to the plasticity equation, Oja’s rule

dwi 7
dt

= (viv; — wiv}) (2.63)

enables a homeostatic mechanism of sorts: under certain conditions, it can be shown
that the afferent weights of a neuron converge asymptotically to a configuration where
> j wizj = 1 (Oja, 1982). Finally, the plasticity rule proposed by Bienenstock, Cooper and
Munro (BCM rule, see Figure 2.24)

= ClV; Vj — CaV;Vj (2.64)

allows neurons to become selective to particular input patterns and has been successfully
used to model the development of receptive fields (Bienenstock et al., 1982).

Long-Term Plasticity: Spike-Based Models

The above considerations are based on empirical observation and sucessfully repro-
duce some experimentally verified phenomena, but remain at a rather abstract level. In
particular, they make no statement about how firing rates are encoded at the site of a
particular synapse and offer no mechanistic model of how an individual synapse performs
the required computation of F'(w;j, v, ;). For a better understanding of the microscopic
phenomena that enable long-term plasticity, having a spike-based plasticity rule is more
convenient.

The arguably most popular spike-based model is STDP, which is short for spike-timing-
dependent plasticity. It is based on the observation that the timing of pre- and post-
synaptic spikes is critical to the evolution of synaptic weights (Bi and Poo, 1998; Markram
et al., 1997). While by now a lot of experimental evidence for STDP exists, Figure 2.25
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BCM plasticity rule. The parameters ¢; and ¢y in Equation 2.64 were both
set to 1. Depending on the postsynaptic firing rate v;, the synapse is either
weakened (LTD, blue hue) or strengthened (LTP, red hue). The fixed point
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probably remains the most recognizable result of an STDP measurement protocol. Given
these measurements, it is quite straightforward to formulate a phenomenological STDP
model.

For any pair of pre- and postsynaptic spikes, we can define the synaptic weight change
to be some function W of the difference in spike timing, as well as of the current synaptic
weight itself. For any pre- and postsynaptic spike trains p; and p; (as defined in Equation
2.30), the total synaptic weight change can be written as a sum over all weight changes
induced by all pre- and postsynaptic spike pairings:

2 : § : k l
Awi]’ == W(wij, ti - tj) . (265)
postsynaptic spikes K  presynaptic spikes [

The function W is generally split, depending on the relative timing of the pre- and post-
synaptic neuron At := tf - té-, into a causal and an acausal branch:

A (wij) exp (—TA—f for At >0 (causal branch)
—A_(w;j) exp (g for At <0 (acausal branch)

T—

The causal and acausal branches are also often called Hebbian and anti-Hebbian, respec-
tively. In most models, the function W factorizes into a pure weight-dependent term A
and a pure spike-timing-dependent term. For simplicity and analytical tractability, the
latter is often chosen as a decaying exponential function of the pre- and postsynaptic
spike interval, which is also in reasonable agreement with the experimental data shown in
Figure 2.25.

In this formulation, the weight-dependent term can be chosen individually for each

branch (“4” encodes the causal and “—” the acausal branch):
A (wig) = f(w™™ —wij)ny  and (2.67)
A_(wij) = f(wi; — wmin)n- (2.68)

The parameters 1y and n_ represent learning rates. For reasons of physical plausibility,
the synaptic weights are bounded from above and below by w™* and wpyi,, respectively.
The function f controls the shape of the weight dependence. Popular choices include the
soft-bounded multiplicative update rule

flz) == (2.69)
and the additive rule with hard bounds
flx)=0(z) , (2.70)

where © denotes the Heaviside step function.

In order to avoid a switch from excitation to inhibition, it is usually assumed that
Wmin > 0. Apart from being theoretically problematic, such a switch would cause a
violation of Dale’s law (see Section 2.1.3); in particular, it would be biologically implau-
sible, since excitation and inhibition are usually mediated by different neurotransmitters.
Indeed, the existence of “inhibitory STDP” has not yet been properly studied.
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Figure 2.25.: In-vitro measurement of STDP for an excitatory synapse. The black cir-
cles denote individual measurements of the EPSP amplitude, which reflects
the synaptic weight. When the presynaptic neuron spikes before the post-
synaptic one (causal relation), the synapse is strengthened. When the timing
of pre- and postsynaptic spikes is reversed (acausal relation), the synapse is
weakened. The relative weight change is largest when the pre- and post-
synaptic spikes appear in quick succession, regardless of their order. The
overlayed solid line represents a schematic timing-dependent learning rule
W (t;,tj). Figure taken from Sjostrom and Gerstner (2010), which is itself
modified from Bi and Poo (1998).

As already mentioned, the STDP model described here, while very popular with com-
putational and theoretical neuroscientists, remains purely phenomenological. However, it
is significantly closer to an electrophysiological explanation of long-term plasticity than
the rate-based models described in the previous section. In this model, the synapse only
needs to “know” the timing of pre- and postsynaptic spikes. While the former is trivial,
the latter has been shown to be possible by action potentials that propagate back from the
soma throughout the dendritic tree (Markram and Sakmann, 1995). While the biological
basis of STDP is not yet completely understood, the standard STDP model described
above has evolved into more complex STDP models based on experimentally established
synaptic molecular dynamics (see, e.g., Shouval et al., 2010). Moreover, these models
also typically strive to explain the vast array of different STDP shapes observed across
different species and brain regions (Abbott and Nelson, 2000).

Short-Term Plasticity: The Tsodyks-Markram Mechanism

Changes in synaptic efficacies also occur on shorter timescales, on the order of mil-
liseconds to seconds. Such changes are usually due to physiological reasons and do not
necessarily encode learning processes, since they are only transient. However, since they
are practically ubiquitous in neural tissue (see, e.g., Thomson and Deuchars, 1994), they
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2. Introduction: From Biological Experiments to Mathematical Models

do play an important role in the way the brain encodes and processes information.

Many experiments have demonstrated that synaptic efficacy is influenced by the firing
rate of the presynaptic neuron. Both weakening and strengthening of synapses have been
observed, sometimes even simultaneously (see, e.g. Markram et al., 1998a, for an extensive
collection of experimental papers). Analogously to their long-term counterparts, these
short-term synaptic weight changes are abbreviated as STD (short-term depression) and
STP (short-term potentiation). Here, we discuss a phenomenological model of short-term
synaptic plasticity: the Tsodyks-Markram-Model (short: TSO, see Tsodyks and Markram,
1997b). For a comprehensive list of biophysical models, we again refer to the review by
Markram et al. (1998a).

Initially, the TSO model was designed for representing STD only and was extended later
to encompass STP as well. We shall therefore also start with a discussion of STD in the
TSO model. The TSO model assumes that the total amount of synaptic resources, which
could, for example, model the total number of vesicles within a synapse, is naturally
limited and subdivided into three partitions: recovered, effective and inactive, which
assume the fractions R, F and I of the total resource amount, respectively. The first
model equation must therefore read

R+E+I1=1 . (2.71)

When the synapse is not activated by presynaptic spikes, all resources are collected into
the recovered partition, such that the resting state is (R, E,I) = (1,0,0). Upon arrival of
a presynaptic spike, a portion U (utilization of synaptic efficacy) of the recovered parti-
tion is instantaneously transferred to the effective partition, which can be interpreted as
neurotransmitter release into the synaptic cleft. The net synaptic effect (postsynaptic cur-
rent /conductance) is therefore considered proportional to the amount of resources in the
effective partition. The effective partition inactivates exponentially with a time constant
Tinact, Which models the removal of neurotransmitters from the postsynaptic site and is
therefore equivalent to the synaptic time constant 75" from Equation 2.50. The resources
removed from the effective partition are transferred to the inactive partition, which then
decays exponentially back into the recovered partition with a recovery time constant Tyec,
thereby modeling neurotransmitter reuptake by the presynaptic terminal. With this, the
TSO model of STD is fully defined and we can cast its dynamics into equations:

dR I
a4 5(t —t, 2.72
dt Trec Z Uk ( ) ( 7)
spikes s
dE E
-t Z URS(t — ts) (2.73)
spikes s

Note that the dynamics of I must not be explicitly given, since they follow directly from
Equations 2.71 — 2.73.

In order to model STP, the original TSO model from Tsodyks and Markram (1997b)
was extended in Markram et al. (1998b) by making U itself a dynamic variable. The
first incoming spike of a train triggers a resource transfer of amplitude Uy, but with each
incoming spike, U is increased by a certain amount AU. By setting AU = Uy(1 — U),
one can ensure that the synapse may never use more resources than it has available. In
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between spikes, U decays back towards its resting state Uy with a facilitation time constant
Tracil- The final equation of the complete TSO model thereby reads:

dU _Up—
dt B Ttacil

A > U(1—U)o(t—ts) (2.74)

spikes s

Typically, synaptic time constants are much shorter than those of short-term plasticity
(both depression and facilitation). By integrating Equations 2.72 — 2.74 under this as-
sumption, we can calculate the change in the TSO variables as a function of the interspike
interval At:

—At —At

Ryi1 = Ry(1 — Upt1) exp ( - > +1—exp ( ~ ) (2.75)
—At —At

En+1 = Epexp < ) + RpUn1 exp < ) (2.76)
Tinact Tinact
—At —At

Un+1 = Un exXp ( > + UO |:1 — Un exXp ( >:| . (277)
Ttacil Tfacil

For a constant presynaptic firing frequency v, we can now easily derive steady-state ex-
pressions for the TSSO variables by setting X, +1 - X, =X (with X € R, E,U):

) U

U=— o ech o) (2.78)

P L - efp <—wlrec) (2.79)
1—(1-U)exp (—wlrec)

. RU exp (=572 (2.80)

1 a eXp (_ VTiiact)

Figure 2.26 shows several examples of STD, STP and a combination of both using the
TSO mechanism.

The TSO mechanism of short-term plasticity plays an important role in later sections
of this manuscript. In the cortical attractor memory model discussed in Section 5.3, it
takes part in controlling the duration of particular activity patterns. In the LIF-based
sampling networks from Section 6.5, it is used to constrain interneuron coupling strengths
by simulating renewing synapses.
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Figure 2.26.: Simulation of synaptic plasticity using the TSO mechanism. The cell is
stimulated by a 100 Hz regular spike train for 100 ms. Synaptic efficacy is
plotted on the left hand side and the resulting membrane potential trace on
the right hand side. Uy was set to 0.2, so the first PSC/PSP in the topmost
example (no TSO) is five times as high as the first PSCs/PSPs of the other
three examples. The synaptic time constant (equivalent to Tinact) was set
to 2 ms. For the purely depressing mode, we have set 7pec = 100 ms and
Tracit = 0 ms. For the purely facilitating mode, we have set 7 = 0 ms and
Tracil = 200 ms. The third mode is a combination of the previous two, with
Tree = 100 ms and 7,e1 = 200 ms. Note how in this regime, where STD and
STP are happening simultaneously, the synaptic efficacy first rises before

dropping off.
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TECHNICALLY TRUEC:

CUVERY OBJIECT \s AN
ANALOG COMPUTER OF \TGELE
HIS MACHINE \G RUNNWNG
A PERFLCT SIMUOLATION
OF (MEECE.

Comic by Zach Weiner, SMBC 3054

When describing increasingly complex! systems, the required array of equations equiv-
alently grows in size and complexity. In many (usually simple) cases, statistical methods
can be applied to distill macroscopic equations from those governing the microscopic com-
ponents of a system, with thermodynamics offering a paradigmatic example. More often
though — and this is usually the case for neural networks — complexity rises beyond math-
ematical tractability. In such cases, it is nowadays possible to fall back onto simulating
these systems.

Owing to recent advances in general-purpose computing architectures, very large sys-
tems of coupled equations can be numerically evaluated in reasonable time on parallel
multiprocessor machines. Especially in neuroscience, the advent of modern-day comput-
ers and algorithms has had an enormous impact, with computational neuroscience now
dominating the theoretical research landscape. Simulating networks of tens of thousands
of spiking neurons has, by now, become routine (see, e.g., Brette et al., 2007) and plans are
even underway to simulate the entire human brain with very large scale parallel machines
(Markram, 2012).

It is clear that any hardware back-end is ultimately only as powerful and versatile as the
software controlling it allows it to be. Therefore, neural network simulators represent the
backbone of computational neuroscience — with the present work making no exception.
Section 3.1 gives a brief overview of the simulation software used for the various neural
network models presented later on, with a particular focus on the abstraction offered by

"Here, complexity can be understood both as number of constituent components, as well as concerning
the nature of the equations describing their dynamics and interactions.
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the simulator-independent language PyNN and the integration with the Python program-
ming language provided by this common interface.

It might now appear that the combination of powerful software and fast general-purpose
hardware is the best possible instrument for modeling neural networks. While this ap-
proach is, indeed, hard to surpass in terms of versatility, it is rather questionable whether
it is optimal in terms of power efficiency and scalability. Obviously, these potential draw-
backs result from the hardware architecture. Von-Neumann-style machines require a huge
structural overhead in order to enable their use as general-purpose computers.

A machine specifically designed for neural network simulations has no need for such
structures and could therefore outperform a conventional machines by orders of magni-
tude in terms of speed and power efficiency, while using essentially the same VLSI tech-
nology. Tailoring hardware to the specific needs of neural network modeling also has the
potential to overcome scalability problems, which appear on conventional architectures
due to communication bandwidth bottlenecks between the processing cores.

One particular class of such machines are aptly named “neuromorphic” devices. They
break away from the classical description-abstraction-simulation paradigm by realizing
a physical implementation of the system to be studied (Mead, 1989, 1990; Mead and
Mahowald, 1988). In this context, it is more intuitive to say that they emulate the system
rather than simulating it. This particular approach is not without limitations of its own
— but the motivation behind neuromorphics is that whatever such systems might lose
in versatility through their choice of a physical model, they more than make up for in
efficiency, speed and scalability (Furber et al., 2012; Indiveri et al., 2006; Rocke et al.,
2008; Schemmel et al., 2010; Vogelstein et al., 2007).

The vision of a universal neuromorphic emulator lies at the very heart of the present
work. While the models and methods developed here strive for generality, they have been
tested and studied on several particular neuromorphic systems. In Sections 3.2 and 3.3,
we describe these systems in detail, as these details will be essential in understanding
the particular strategies chosen for the implementation of the models that we shall later
elaborate on.

Just as with conventional hardware, a complex stack of software modules is required for
operating neuromorphic systems. The interplay between hardware, software and the users
themselves can be systematized into a particular workflow, which is to a large extent
characteristic for the employed hardware platform (Briiderle et al., 2011). The most
relevant aspects of the software and workflows built around the neuromorphic devices
used for this work are addressed subsequently to their respective hardware description.

In the hardware-related sections 3.2 and 3.3, we only offer a high-level modeler’s view
of the neuromorphic systems. For a more detailed description of the constituent circuits,
we point to the relevant publications in the respective sections. The material (text and
figures) of Sections 3.2 and 3.3 is taken entirely from publications that were co-authored
by the author of this thesis, in particular Pfeil et al. (2013) and Petrovici et al. (2014).

o8



3.1. Simulation of Neural Networks

3.1. Simulation of Neural Networks

Computer simulations are an irreplaceable tool for computational neuroscience. While
significant efforts are being made towards simulating large-scale, highly detailed cortical
models (see, e.g., Markram, 2006), most simulation software is designed to handle more
abstract neuron models (Brette et al., 2007), such as the ones we are using in our present
work. Depending on the particular requirements of an individual network model, such as
the required neuron model or the network size, or on the specific investigated question,
which might require large amounts of simulation runs, one may choose to favor one par-
ticular simulation engine that is exceptionally adept for the task at hand. Unfortunately,
switching from one simulation software to another is rarely straightforward and usually
involves a complete rewrite of the entire simulation code.

This represents the motivation behind PyNN, a simulator-independent API for the
high-level definition of point neuron networks (Davison et al., 2008). PyNN abstracts
away the details of the software back-end and unifies the interface for instantiating neu-
rons and synapses, controlling their parameters and recording relevant dynamic variables.
Individual back-end-specific modules that remain hidden from the user then take care
of the translation of the networks defined in PyNN to the chosen simulation engine. A
particularly useful feature of PyNN in the context of our work is that it also supports
both the Spikey chip (Section 3.2) and the waferscale system (Section 3.3) as emulation
back-ends.

All the network models that we discuss later on are defined via PyNN. For our software
simulations, we use either NEST (Diesmann and Gewaltig, 2002; Gewaltig and Diesmann,
2007; Website, 2009) or NEURON (Hines and Carnevale, 2003; Hines et al., 2008; Hines
and Carnevale, 2006) as back-ends. For the hardware emulations, we use the Spikey chip
for the small network models and the ESS (Section 3.3.4) of the waferscale system for the
networks with a larger number of neurons.

PyNN

'S);n':llﬂlc:::gjﬁiciﬁc [ pynn.nest ] [pynn.pcsim ] [pynn.brion ] [hce’sﬁz:;;mre]] [pynn.neuron ] [pynn.neuroml ] [ 95::5?;2 ] [pynn,moose ]

kS A £ 7 kN

kY] RV U V3 iV
Python interprefer PyNEST PyPCSIM B PyHAL ] nrnpy . U PyMOOSE
Native inferpreter ‘ ﬁ ﬁ hoc ¥4 NeuroML J:{ sli J ﬁ

T (] 1] 1] 1T
FACETS
Simulator kernel ‘ NEST J ‘ PCSIM J hardware J NEURON ] GENESIS 2 J MOOSE J
‘ <=> Direct communication <= Code generation D Implemented D Planned ‘

Figure 3.1.: Schematic of the PyNN architecture and its interaction with several simula-
tion/emulation back-ends. Figure taken from Davison et al. (2008).
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3. Artificial Brains: Simulation and Emulation of Neural Networks

3.2. The Spikey Chip

The central component of the single-chip neuromorphic setup we will use in Chapter 5
is the “Spikey” neuromorphic microchip. It contains analog very-large-scale integration
(VLSI) circuits modeling the electrical behavior of neurons and synapses.

In such a physical model, measurable quantities in the neuromorphic circuitry have
corresponding biological equivalents. For example, the membrane potential u of a neuron
is modeled by the voltage over a capacitor Cp, that, in turn, can be seen as a model of
the capacitance of the cell membrane.

In contrast to numerical approaches, dynamics of physical quantities like u evolve con-
tinuously in time. We designed our hardware systems to have time constants approxi-
mately 10% times faster than their biological counterparts allowing for high-throughput
computing. This is achieved by reducing the size and hence the time constant of electrical
components, which also allows having more neurons and synapses on a single chip with
fixed dimensions. To avoid confusion between hardware and biological domains of time,
voltages and currents, all parameters are specified in the biological domain.

3.2.1. The Neuromorphic Chip

On the Spikey chip (Figure 3.2), a VLSI version of the LIF neuron model (Section 2.2.1.1)
with COBA synapses (Section 2.2.2.1) is implemented:

du syn
Cm% =—-g(u—E)— ;gi (u— E;) (3.1)
The time course of the synaptic activation is modeled by
gi(t) = pi(t) - wi - g"** (3.2)

where g;"®* are the maximum conductances and w; the weights for each synapse, respec-
tively. The time course p;(t) of synaptic conductances is a linear transformation of the
current pulses shown in Figure 3.2B (in green), and hence an exponentially decaying func-
tion of time. For a more detailed layout of the relevant circuits, we refer to Schemmel
et al. (2006) and Indiveri et al. (2011).

The implementation of STDP is described in Schemmel et al. (2006) and Pfeil et al.
(2012a). Correlation measurements between pre- and post-synaptic action potentials are
carried out in each synapse, and the 4-bit weight is updated by an on-chip controller
located in the digital part of the Spikey chip. As STDP is not relevant for our studies, we
do not discuss it in more detail.

Short-term plasticity (STP) modulates ¢/*** (Schemmel et al., 2007) similar to the
model by Tsodyks and Markram (1997a). On hardware, STP can be configured individ-
ually for each synapse line driver that corresponds to an axonal connection in biological
terms. It can either be facilitating or depressing, but, in contrast to the original model,
not both at the same time.

The propagation of spikes within the Spikey chip is illustrated in Figure 3.2 and de-
scribed in detail in Schemmel et al. (2006). Spikes enter the chip as time-stamped events
using standard digital signaling techniques that facilitate long-range communication, e.g.,
to the host computer or other chips. Such digital packets are processed in discrete time
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Figure 3.2.: The Spikey neuromorphic chip. Left: Microphotograph of the chip (fabri-
cated in a 180 nm CMOS process with a die size of 5 x 5 mm?). Each of its 384
neurons can be connected to any other neuron on the chip. In the following,
we give a short overview of the technical implementation of neural networks
on the Spikey chip. (A) Within each synapse array, 256 synapse line drivers
convert incoming digital spikes (blue) into a linear voltage ramp (red) with
a falling slew rate tg,1. For simplicity, the slew rate of the rising edge is not
illustrated here, as it is, in general, chosen to be comparatively small. Each
of these synapse line drivers are individually driven by either another on-chip
neuron (int) or an external spike source (ext). (B) Within each synapse,
depending on its individually configurable weight w;, the linear voltage ramp
(red) is then translated into a current pulse (green) with exponential decay.
These postsynaptic pulses are sent to the neuron via excitatory (exc) and
inhibitory (inh) input lines, which are shared by all synapses belonging to the
same column. (C) Upon reaching the neuron circuit, the total current on
both input lines is converted into conductances. If the membrane potential u
crosses the firing threshold ¥, a digital pulse (blue) is generated, which can
be recorded and fed back into the synapse array. After each spike, u is set
to o for a refractory period 7. Neuron and synapse line driver parameters
can be configured as summarized in Table 3.1. Figure taken from Pfeil et al.
(2013).
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in the digital part of the chip, where they are transformed into digital pulses entering
the synapse line driver (marked red in Figure 3.2A). These pulses propagate in continu-
ous time between on-chip neurons, and are optionally transformed back into digital spike
packets for off-chip communication.

3.2.2. System Environment

The Spikey chip is mounted on a network module (see the schematic in Figure 3.3. Dig-
ital spike and configuration data is transferred via direct connections between a field-
programmable gate array (FPGA) and the Spikey chip. Onboard digital-to-analog con-
verter (DAC) and analog-to-digital converter (ADC) components supply external parame-
ter voltages to the Spikey chip and digitize selected voltages generated by the chip for cal-
ibration purposes. Furthermore, up to eight selected membrane voltages can be recorded
in parallel by an oscilloscope. Because communication between a host computer and the
FPGA has a limited bandwidth that does not satisfy real-time operation requirements
of the Spikey chip, experiment execution is controlled by the FPGA while operating the
Spikey chip in continuous time. To this end, all experiment data is stored in the local
random access memory (RAM) of the network module. Once the experiment data is
transferred to the local RAM, emulations run with an acceleration factor of 10* compared
to biological real-time, independently of the emulated network size.

Execution of an experiment is split into three steps. First, the control software within
the memory of the host computer generates configuration data (such as synaptic weights,
network connectivity, etc., see Table 3.1), as well as input stimuli to the network. All data
is stored as a sequence of commands and is transferred to the memory on the network
module. In the second step, a playback sequencer in the FPGA logic interprets this data
and sends it to the Spikey chip, after which it triggers the emulation. Data produced by
the chip (essentially, spike times) is recorded in parallel. In the third and final step, this
recorded data stored in the memory on the network module is retrieved and transmitted
to the host computer, where they are processed by the control software.

Having a control software that abstracts away the hardware details greatly increases the
accessibility for a diverse community of users. However, modelers are already struggling
with mutually incompatible interfaces to various software simulators. That is why the
Spikey system supports PyNN, a widely used application programming interface (API)
that strives for a coherent user interface, allowing portability of neural network models
between different software simulation frameworks (such as NEST or Neuron) and hardware
systems (such as the Spikey system or the wafer-scale device in Section 3.3).

3.2.3. Configurability

In order to facilitate the emulation of a large variety of network models (with a declared
focus on biologically-inspired structures), it is essential to support the implementation
of different neuron and synapse types. This can be achieved by varying the appropriate
parameters of the implemented neurons and synapses. We assume, implicitly, that the
implemented COBA LIF dynamics are sufficient for a good enough approximation of the
neuron/synapse dynamics that are to be modeled.

The Spikey chip provides 2969 different analog parameters (Table 3.1) stored on current
memory cells that are continuously refreshed from a digital on-chip memory. Most of

62



-

Network Module

Spikey Chip

"\

Neuromorphic Network

Sequencer
(FPGA)

DAC/ADCS >

v

-

Host Computer

PyNN
(neuronal network
modeling language)

Control
Software
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Figure 3.3.: Integrated development environment. User access to the Spikey chip is pro-
vided using the PyNN neural network modeling language. The control soft-
ware controls and interacts with the network module which is operating the
Spikey chip. The RAM size (512 MB) limits the total number of spikes for
stimulus and spike recordings to approx. 2 - 10® spikes. The required data
for a full configuration of the Spikey chip has a size of approximately 100 kB.
Figure taken from Pfeil et al. (2013).
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3.2. The Spikey Chip

these cells deliver individual parameters for each neuron or synapse line driver. However,
due to the size of the current-voltage conversion circuitry, this was not achievable for all
parameters. In particular, this concerns the reversal potentials Fy, E.® and EfY, for each
neuron.? As a consequence, groups of 96 neurons share most of these voltage parameters.
Parameters that can not be controlled individually are delivered by global current memory
cells.

In addition to the possibility of controlling analog parameters, the Spikey chip also offers
an almost arbitrary configurability of the network topology. As illustrated in Figure 3.2,
the fully configurable synapse array allows connections from synapse line drivers (located
alongside the array) to arbitrary neurons (located below the array) via synapses whose
weights can be set individually with a 4-bit resolution. This limits the maximum fan-in
to 256 synapses per neuron, which can be composed of up to 192 synapses from on-chip
neurons, and up to 256 synapses from external spike sources. Because the total number of
neurons exceeds the number of inputs per neuron, an all-to-all connectivity is not possible.
However, it is rather sensible to assume that network models only rarely require all-to-all
connectivity. For all Spikey experiments that we discuss here, the connection density is
completely unproblematic.

3.2.4. Calibration

Device mismatch that arises from the inevitable variability in the manufacturing process
causes fixed-pattern noise, which manifests itself as parameter variability from neuron to
neuron as well as from synapse to synapse. Electronic noise (including thermal noise) also
affects dynamic variables such as the membrane potential u. Consequently, experiments
will exhibit some amount of both neuron-to-neuron and trial-to-trial variability given the
same input stimulus.

To facilitate modeling and provide sufficient repeatability of experiments on Spikey
chips, it is essential to minimize these effects by calibration routines. Many calibration
routines target parameters with a direct correspondence to biology, such as membrane time
constants (described in the following), firing thresholds, synaptic efficacies or PSP shapes.
Others have no biological equivalents, such as compensations for shared parameters or
workarounds of defects (Bill et al., 2010; Kaplan et al., 2009; Pfeil et al., 2012b). In
general, calibration results are used to improve the mapping between biological input
parameters and the corresponding target hardware voltages and currents, as well as to
determine the dynamic range of all model parameters (see, e.g., Briiderle et al., 2009).

While the calibration of most parameters is rather technical, but straightforward (e.g.,
all neuron voltage parameters), some require more elaborate techniques. These include
the calibration of 7, short-term synaptic plasticity, as well as synapse line drivers.

The membrane time constant 7, = Cp, /g differs from neuron to neuron mostly due
to variations in the leakage conductance g. However, g; is independently adjustable for
every neuron. Because this conductance is not directly measurable, an indirect calibration
method is employed. To this end, the threshold potential is set below the resting potential.
Following each spike, the membrane potential is clamped to ¢ for an absolute refractory
time Tyef, after which it evolves exponentially towards the resting potential Fj until the

2 Strictly speaking, Fj is of course not a reversal potential in the same sense as E®¥ and Ef*Y (see Section
2.1.1). However, from a purely mathematical perspective, these three parameters have equivalent
contributions to the LIF equation 2.54.
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Figure 3.4.: Calibration results for membrane time constants. Left: Before calibration,
the distribution of 7, values has a median of 15.1ms with 20th and 80th
percentiles of 7,20 = 10.3ms and 7,%° = 22.1 ms, respectively. Right: After
calibration, the distribution median lies closer to the target value and narrows
significantly: the median is 11.2ms, with 7,20 = 10.6 ms and 7,,%° = 12.0ms.
Two neurons were discarded, because the automated calibration algorithm
did not converge.

threshold voltage triggers a spike and the next cycle begins (see Figure 2.16 and Equation
2.36). If the threshold voltage is set to ¥ = Ey — 1/e- (Ey — p), the spike frequency equals
1/(7m + Tret), thereby allowing an indirect measurement and calibration of g and therefore
Tm- The effect of calibration on a typical chip can best be exemplified for a typical target
value of 7, = 10 ms. Figure 3.4 depicts the distribution of 7y, of a typical chip before and
after calibration.

The short-term plasticity hardware parameters have no direct translation to model
equivalents. In fact, the implemented transconductance amplifier tends to easily saturate
within the available hardware parameter ranges. These non-linear saturation effects can
be hard to handle in an automated fashion on an individual circuit basis. Consequently,
the translation of these parameters is based on short-term plasticity courses averaged over
several circuits.
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3.3. Wafer-Scale Integration

Going from single chips to multi-chip systems can be achieved in various ways. For exam-
ple, multiple Spikey modules can be interconnected on a backplane to form larger neural
networks (see, e.g., Jeltsch, 2010). However, this appears to be quite inefficient consider-
ing the large communication overhead imposed by the non-neuromorphic hardware parts.
Considering the fact that individual chips are actually cut down from a wafer, previously
to which they lie in close physical proximity to each other, a potential solution is con-
ceptually almost apparent, although technically far from trivial: employ an entire wafer
as a single neuromorphic substrate. This the core idea behind the concept of wafer-scale
integration.

Figure 3.5 shows a 3D-rendered image of the BrainScaleS wafer-scale hardware system.
The 8 inch silicon wafer contains 196 608 neurons and 44 million plastic synapses imple-
mented in mixed-signal VLSI circuitry. As for the Spikey chip (Section 3.2), due to the
high integration density of the circuits, the intrinsic time constants of their dynamics are
small, fostering a speedup of approx. 10* compared to biological real time. The principal
building block of the wafer is the so-called HICANN (High Input Count Analog Neural
Network) chip (Schemmel et al., 2008, 2010). During chip fabrication, only a limited area
called a reticle can be simultaneously exposed during photolithography, which is one of
the reasons why such a wafer is cut into individual chips after production. For the Brain-
ScaleS system, however, the wafer is left intact, and additional structures are grown onto
the wafer surface in a post-processing step. This process establishes connections between
all 384 HICANN blocks that allow a very high bandwidth for on-wafer pulse-event com-
munication (Schemmel et al., 2008). The neuromorphic wafer is accompanied by a stack
of digital communication modules for the connection of the wafer to the host PC and to
other wafers (see Section 3.3.2 and Figure 3.6).

3.3.1. HICANN Building Block

On the HICANN chip (lower left of Figure 3.6), one can recognize two symmetric blocks
which hold the analog core modules. The upper block is depicted in detail in Figure
3.7. Most of the area is occupied by the synapse array with 224 rows and 256 columns.
All synapses in a column are connected to one of the 256 neuron circuits located at the
center of the chip. For each two adjacent synapse rows, there is one synapse driver that
forms the input for pre-synaptic pulses to the synapse array. Synapse drivers are evenly
distributed to the left and right side of one synapse array (56 per side). A grid of horizon-
tal and vertical buses enables the routing of spikes from neuron circuits to synapse drivers.

Up to 64 neuron circuits (a.k.a. DenMems, short for dendritic membranes) can be
interconnected to form neurons with up to 14336 synapses (see Table 3.2). The neurons
emulate the dynamics of the AdEx model in analog circuitry, defined by equations for the
membrane voltage u, the adaption current w and a reset condition that applies when a
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Figure 3.5.: The BrainScaleS wafer-scale hardware system. (A) Wafer comprising HI-
CANN building blocks and on-wafer communication infrastructure covered
by an aluminum plate. (B) Digital inter-wafer and wafer-host communica-
tion modules. Also visible: mechanical and electrical support.
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HICANN

Architecture of the BrainScaleS wafer-scale hardware system. Left: The
HICANN building block has two symmetric halves with synapse arrays and
neuron circuits. Neural activity is transported horizontally (blue) and verti-
cally (red) via asynchronous buses that span over the entire wafer. Exemplary
spike paths are shown in yellow on the HICANN. Incoming spike packets are
routed to the synapse drivers. In the event that a neuron spikes, it emits a
spike packet back into the routing network. Right: Off-wafer connectivity is
established by a hierarchical packed-based network via DNCs and FPGAs. It
interfaces the on-wafer routing buses on the HICANN building blocks. Sev-
eral wafer modules can be interconnected using routing functionality between
the FPGAs.
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spike is triggered:

d -9

Cne = — gi(u— B)) + glArexp ( = —w+ I (3.3)
dt At
d

de—qua(u—El)—w , (3.4)
. u—0
if u> Viike : 3.5

= Topik {w—>w+b (8:5)

An absolute refractory mechanism is supported by clamping u to its reset value for the
refractory time 7.of. We refer to Section 2.2.1.2 for a more detailed discussion of this
neuron model.

The generated spikes are transmitted digitally to synapse drivers (which effectively
implement analog multipliers), synapses (additional digital multipliers) and finally other
neurons, where postsynaptic conductance courses are generated and summed up linearly,
resulting in the synaptic current I":

= 3" Gi(B —u) (3.6)

synapses ¢

—gi FwPt Y S(t—ts) (3.7)

spikes s

dg;
syn ~J°
T

with the same notations as in Section 2.2.2.1. In the hardware implementation (Millner
et al., 2010), each neuron features two of such synaptic input circuits, which are typically
used for excitatory and inhibitory input. Nearly all parameters of the neuron model and
the synaptic input circuits are individually adjustable by means of analog storage banks
based on floating gate technology (Lande et al., 1996).

In the hardware neuron, both the circuit for the adaption mechanism and the expo-
nential term circuit can be effectively disconnected from the membrane capacitance, such
that a simple LIF model can also be emulated. The hardware membrane capacitance is
fixed to one of two possible values. As the parameters controlling the temporal dynamics
of the neuron such as g; and the time constants are configurable within a wide range, the
hardware is able to run at a variable speedup factor (10% —10°) compared to biological real
time. In particular, the translation of the membrane capacitance between the hardware
and the biological domain can be chosen freely due to the independent configurability of
both membrane and synaptic conductances, thereby effectively allowing the emulation of
point neurons of arbitrary size - within the limits imposed by the hardware parameter
ranges.

In contrast to neurons, where each parameter is fully configurable within the specified
ranges (see Table 3.3), the synaptic weights are adjustable by a combination of analog
and digital memories. The synaptic weight w*" is proportional to a row-wise adjustable
analog parameter gmax and to a 4-bit digital weight specific to each synapse. The gmax of
two adjacent rows can be configured to be a fixed multiple of each other. This way, two
synapses of adjacent rows can be combined to offer a weight resolution of 8 bits, at the
cost of halving the number of synapses for this synapse driver.

Long-term learning is incorporated in every synapse through STDP (see Section 2.2.2.2).
The implemented STDP mechanism follows a pairwise update rule with programmable
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Nr of Neurons Synapses/ DenMems/ Neurons/
Neuron Neuron HICANN

196 608 224 1 512
98 304 448 2 256
49152 896 4 128
24576 1792 8 64
12288 3584 16 32

6144 7168 32 16
3072 14 336 64 8

Table 3.2.: Some typical usage scenarios of the wafer-scale hardware system. The number
of synapses per neuron can be increased by interconnecting DenMems to form
larger point neurons.

update functions (Morrison et al., 2008). As the models we discuss here (Chapter 5) do
not incorporate STDP, we refer to Briiderle et al. (2011); Schemmel et al. (2006, 2007)
for details on the hardware implementation and to Pfeil et al. (2012a) for an applicability
study of these circuits.

In contrast to the long-term learning, the implemented short-term plasticity mechanism
is not permanent, i.e., all effects decay over periods of up to several hundred ms. It is
motivated by the phenomenological model by Markram et al. (1998a) (see also Section
2.2.2.2, but note that the dynamics are not identical!) and depends only on the presynaptic
activity, therefore being implemented in the synapse driver. For every incoming spike, a
synapse only has access to a portion U of the recovered partition R of its total synaptic
weight wiyax, which then instantly decreases by a factor 1—U and recovers slowly along an
exponential with the time constant 7., thus emulating synaptic depression. Facilitation
is implemented by replacing the fixed U with a running variable U, which increases with
every incoming spike by an amount U(1 — U) and then decays exponentially back to U
with the time constant 7g,q:

w,sffl = wfr}l];lan—&-lUn—i-l (38)
At
Rot1=1-[1-R,(1—-U,)|exp | — (3.9)
Trec
At
Unis = U+ Un(1 — U) exp (—T ) (3.10)
facil

with At being the time interval between the nth and (n+1)st afferent spike. In contrast to
the original TSO mechanism, the hardware implementation does not allow simultaneous
depression and facilitation (Bill et al., 2010; Schemmel et al., 2008). See Section A.2.2.1
for details about the hardware implementation and the translation of the original model
to the hardware STP.

All of the neuron and synapse parameters mentioned above are affected by fixed-pattern
noise due to transistor-level mismatch in the manufacturing process. Additionally, the
floating gate analog parameter storage reproduces the programmed voltage with a limited
precision on each re-write. This leads to trial-to-trial variability for each experiment
(see Section A.2.2.2 for exemplary measurements). Limited configurability, such as the
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Description

Name

Min

Max

Unit

Comment

Neuron (Adaptive Exponential Integrate&Fire)

Absolute refractory period Tref 0.16 10.0 ms

Spike detection potential Vpike  -125.0  45.0 mV

Reset potential E, -125.0 45.0 mV

Leakage reversal potential Viest -125.0 450 mV

Membrane time constant Tm 9 105 ms

Adaptation coupling param a 0 10.0 nS adaptation can be fully
disabled

Spike triggered adapt. param b 0 86 pPA

Adaptation time constant Tw 20.0 780.0 ms

Threshold slope factor A 0.4 3.0 mV  exponential spike

Spike initiation threshold Er -125.0 45.0 mV generation can be fully

Excitatory reversal potential EX®Y -125.0 45.0 mV disabled

Inhibitory reversal potential EfV -125.0 450 mV

Exc. synaptic time constant i 1.0  100.0 ms

Inh. synaptic time constant " 1.0  100.0 ms

Synapses

Weight wsY™ 0 0.300 pS  4-bit resolution

Axonal delay (on-wafer) delay 1.2 2.2 ms not configurable

Short Term Plasticity

Utilization of synaptic efficacy U 0.11 047 possible
(5, 11 735 15)

Recovery time constant Trec 40.0 900.0 ms One of the two time

Facilitation time constant TEacil 35.0 200.0 ms constants has to be set to
0.0. Available range
depends on U (maximum

Stimulus range given).

External spike sources v 0.0 4000 Hz cf. Scholze et al. (2011b)

Table 3.3.: Parameter ranges of the BrainScaleS wafer-scale hardware. All ranges corre-
spond to a membrane capacitance of Cy, = 0.2nF and a hardware speedup
of 10* compared to real time. It is possible to choose an arbitrary value for
Chy, but then the ranges of parameters a, b and of the synaptic weights are

multiplied by OgﬁF .
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discretization of available synaptic weights, is another source for discrepancy between
targeted and realized configuration. The trial-to-trial variability, which cannot be reduced
by calibration (Section 3.3.3), is assumed to be less than 30 % (standard-deviation-to-mean
ratio) for synaptic weights. Other neuron parameters are assumed to have a much smaller
variability: Ej, 9, E™' have a standard deviation of less than 1mV in the biological
domain.

For technical details about the HICANN chip and its components, we refer to Schemmel
et al. (2008, 2010).

3.3.2. Communication Infrastructure

The infrastructure for pulse communication in the wafer-scale system is supplied by a
two-layer approach. While the on-wafer network routes pulses between neurons on the
same wafer, the off-wafer network connects the wafer to the outside world, i.e., to the
host PC or to other wafers.

The backbone of the on-wafer communication consists of a grid of horizontal and vertical
buses enabling the transport of action potentials by a mixture of time division and space
division multiplexing. Each HICANN building block contains 64 horizontal buses at its
center and 128 vertical buses located on each side of the synapse blocks, as can be seen
in Figure 3.7. A bus can carry the spikes of up to 64 source neurons by transmitting a
serial 6-bit signal encoding the currently sending neuron (with an ID from 0 to 63).

When a neuron fires, its pulse is first processed by one of eight priority encoders and
finally injected into a horizontal bus after passing a merger stage. By enabling a static
switch of a sparse crossbar between horizontal and vertical buses, the injected serial signal
can be made available to a vertical bus next to the synapse array. Another sparse switch
matrix allows to feed the signals from the vertical buses into the synapse array, more
precisely into the synapse drivers which represent the data sinks of the routing network.
Synapse drivers can be connected in a chain, forwarding their input to their top or bottom
neighbors, thereby allowing to increase the number of synapse rows fed by the same routing
bus.

The bus lanes do not end at the HICANN border but run over the whole wafer by
edge-connecting the HICANN building blocks (Figure 3.6). Both the sparseness of the
switches and the limited number of horizontal and vertical buses represent a possible
restriction for the connectivity of network models. If an emulated network requires a
connectivity that exceeds the on-wafer bus capacity, some synapses will be impossible to
map to the wafer and will therefore be lost.

Pulse propagation delays in the routing network are small, distance-dependent and
not configurable. The time between spike detection and the onset of a PSP has been
measured as 120 ns for a recurrent connection on a HICANN. The additional time needed
to transmit a pulse across the entire wafer is typically less than 100 ns (Schemmel et al.,
2008), hence the overall delay sums up to 1.2 - 2.2ms in the biological time domain,
assuming a speedup factor of 10%.

Also, in case of synchronous bursting of the neurons feeding one bus, some pulses are
delayed with respect to others, as they are processed successively. A priority encoder
handles the spikes of 64 hardware neurons with priority fixed by design. If several
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HICANN HICANN
I1I2I8I — vertical buses — I1I2I8I 128
tolp; Illeﬂ upper toﬁlrlilght top left
syndrv. synapse syndrv. syndrv.
switch array switch switch
(5=8) (256x224) (S=8) (5=8)

v v ' ' 56 syn. drivers

AAAA syn. drivers

[ 256 neuron circuits |

priority encoders
merger tree

‘Y
o 64 horizontal buses %o o

T~ crossbar switches (5=32) —

Figure 3.7.: Components and connectivity of the HICANN building block. The figure
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shows the upper block of the HICANN chip. Most of the area is occupied by
the synapse array with 256 columns and 224 rows. Each synapse column is
connected to one of 256 neuron circuits, from which up to 64 can be inter-
connected to form larger neurons with up to 14336 input synapses. When a
neuron fires, a neuron-specific 6-bit address is generated and injected into one
of eight accessible horizontal buses after passing a merger stage. Via two stat-
ically configurable switches (crossbar and synapse driver switch) these pulses
are routed to the synapse drivers, each of which controls two synapse rows.
Every synapse is configured to a specific 6-bit address, so that, when a pre-
synaptic pulse with a matching address arrives, a post-synaptic conductance
course is generated at the associated neuron circuit. Both switch matrices
are sparse, i.e. configurable switches do not exist at all crossings of horizontal
and vertical lines, but e.g. only at every 8th crossing (sparseness S=8). On
the wafer, the horizontal and vertical buses, as well as the horizontal lines
connected to the synapse drivers do not end at the HICANN borders, but go
beyond them.
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neurons have fired, the pulse of the neuron with highest priority is transmitted first to
the connected horizontal bus. The priority encoder can process one pulse every two clock
cycles (2 x 5ns), leading to an additional delay for the pulses with lower priority. In rare
cases some pulses may be completely discarded, e.g., when the total rate of all 64 neurons
feeding one bus exceeds 10 kHz for longer than 6.4 ms (in biological real-time).

A hierarchical packet-based network provides the infrastructure for off- and inter-wafer
communication. All HICANNSs on the wafer are connected to the surrounding system and
to other wafers via 12 pulse communication subgroups (PCS). Each PCS consists of one
FPGA and 4 ASICs (Application Specific Integrated Circuits) that were designed for high-
bandwidth pulse-event communication (so-called Digital Network Chips or DNCs). Being
the only communication link to/from the wafer, the off-wafer network also transports
the configuration and control information for all the circuits on the wafer. As depicted in
Figure 3.6, the network is hierarchically organized: one FPGA is connected to four DNCs,
each of which is connected to 8 HICANNSs of a reticle. Each FPGA is also connected to
the host PC and potentially to up to 4 other FPGAs.

When used for pulse-event communication, an FPGA-DNC-HICANN connection sup-
ports a throughput of 40 Mevents/s (Scholze et al., 2011b) with a timing precision of 4 ns.
In the biological time domain, this corresponds to monitoring the spikes of all 512 neurons
on a HICANN firing with a mean rate of 8 Hz each with a resolution of 0.04 ms. The
same bandwidth is available simultaneously in the opposite direction, allowing a flexible
network stimulation with user-defined spiketrains.

For further technical details about the PCS, the FPGA design and the DNC, we refer
to Scholze et al. (2010, 2011a) and Hartmann et al. (2010).

3.3.3. Software Framework

The utilized software stack (Briiderle et al., 2011) allows the user to define a network
description and maps it to a hardware configuration. As for the Spikey chip, the network
definition can be done in PyNN, thus abstracting away the hardware details. In principle,
one could use only the PyNN level for completely hardware-agnostic modeling. As it turns
out, however, more challenging emulation scenarios (large networks that are sensitive
to parameter distortions) do require at least a high-level understanding of the hardware
itself, which constitutes the subject of the entire Chapter 5.

The mapping process (Briiderle et al., 2011; Ehrlich et al., 2010) translates the PyNN
description of the neural network structure, as well as its neuron and synapse models and
parameters, in several steps into a neuromorphic device configuration. This translation is
constrained by the architecture of the device and its available resources.

The first step of the mapping process is to allocate static structural neural network
elements to particular neuromorphic components during the so-called placement . Sub-
sequently, a routing step is executed for establishing connections in between the placed
components. During the final parameter transformation step, all parameters of the net-
work components (neurons and synapses) are translated into hardware parameters. First,
the model parameters are transformed to the voltage and time domain of the hardware,
taking into account the acceleration and the voltage range of 0V to 1.8 V (Millner et al.,
2010). Afterwards, previously obtained calibration data is used to reduce mismatches

75

off-wafer
COMMUNILCA-
tion,

PCS

DNC

hardware-
agnostic
modeling

mapping

placement
routing
parameter
transforma-
tion

calibration



synapse [0ss

ESS

3. Artificial Brains: Simulation and Emulation of Neural Networks

between the target behavior and real behavior of the analog components.

The objective of the mapping process is to find a configuration of the hardware that best
reproduces the experiment specified in PyNN. The most relevant constraints are sketched
in the following.

Each hardware neuron circuit has a limited number of 224 incoming synapses. By
interconnecting several neuron circuits one can form larger neurons with more incoming
synapses (see Section 3.3.1), with the trade-off that the overall number of neurons is
reduced. Still, each hardware synapse can not be used to implement a connection from an
arbitrary neuron but only from a subset of neurons, namely the 64 source neurons whose
pulses arrive at the corresponding synapse driver. For networks larger than 10 000 neurons
it is the limited number of inputs to one HICANN that becomes even more restricting, as
there are only 224 synapse drivers (see Figure 3.7), yielding a maximum of 14366 different
source neurons for all neurons that are placed to the same HICANN. Hence, one objective
of the mapping process is to reduce this number of source neurons per HICANN, thus
increasing the number of realized synapses on the hardware. In general, this criterion is
met when neurons with common pre-synaptic partners are placed onto the same HICANN
and neurons with common targets inject their pulses into the same on-wafer routing bus.

All of the above, as well as the limited number of on-wafer routing resources (see
Section 3.3.2) make the mapping optimization an NP-hard problem. The used placement
and routing algorithms, which improve upon the ones described in Briiderle et al. (2011)
and Fieres et al. (2008) but are far from being optimal, can minimize the effect of these
constraints only to a certain degree. Thus, depending on the network model size, its
connectivity, and the choice of the mapping algorithms, synapses are lost during the
mapping process; in other words, some synapses of a network defined in PyNN will simply
not exist in the corresponding network that is emulated on the hardware.

3.3.4. Executable System Specification (ESS)

The ESS is a detailed simulation of the hardware platform (Briiderle et al., 2011; Ehrlich
et al., 2007) that replicates the topology and dynamics of the communication infrastruc-
ture as well as the analog synaptic and neuronal components.

The ESS encompasses a numerical solver of the equations that govern the hardware
neuron and synapse dynamics, as well a detailed reproduction of the digital commu-
nication infrastructure at the level of individual spike transmission in logical hardware
modules. The ESS is a specification of the hardware in the sense that its configuration
space faithfully maps the possible interconnection topologies, parameter limits, parame-
ter discretization and shared parameters. Being executable, the ESS also covers dynamic
constraints, such as the consecutive processing of spikes which can lead to spike time jitter
or spike loss.

Variations in the analog circuits that are inherent to analog VLSI are not simulated at
transistor level but are rather artificially imposed on the ideal hardware parameters. All of
this allows to simultaneously capture the complex dynamic behavior of the hardware and
comply with local bandwidth limitations, while allowing relatively quick simulations due to
the high level of abstraction. Analogously to the neuromorphic hardware itself, simulations
on the ESS can be controlled using PyNN, with only a few additional hardware-specific
commands. Both for the real hardware and for the ESS, the mapping process translates
a PyNN network into a device configuration, which is then used as an input for the
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respective back-end. One particular advantage of the ESS is that it allows access to state
variables which can otherwise not be read out from the real hardware, such as the logging
of lost or jittered time events.

7






4. Dynamics and Statistics of
Poisson-Driven LIF Neurons

The miracle of the appropriateness of the language of mathe-
matics for the formulation of the laws of physics is a wonderful
gift which we neither understand nor deserve. We should be
grateful for it and hope that it will remain wvalid in future
research and that it will extend, for better or for worse, to our
pleasure, even though perhaps also to our bafflement, to wide
branches of learning.

Eugene Wigner, The Unreasonable Effectiveness of
Mathematics in the Natural Sciences, 1960

FEugene Wigner wrote a famous essay on the unreasonable
effectiveness of mathematics in natural sciences. He meant
physics, of course. There is only one thing which is more
unreasonable than the unreasonable effectiveness of mathemat-
ics in physics, and this is the unreasonable ineffectiveness of
mathematics in biology.

Israel Gelfand, alleged quote

In Chapter 2, we have described how point neuron and exponential synapse models can
be obtained as an abstraction of the complex electrochemical dynamics of neurons and
synapses observed in vivo. Throughout the remainder of this thesis, we shall continue
working with such abstract models, in particular point LIF and AdEx neurons with either
current or conductance-based synapses with an exponential interaction kernel.

Despite the relatively simple form of their governing differential equations, it turns out
that closed-form solutions for their phase space trajectories are not always easily found.
Furthermore, when subjected to background synaptic bombardment, as is usually the case
in vivo, even these simple models turn out to have a surprising behavior. In particular,
important differences appear between current- and conductance-based synaptic interac-
tion. As the investigated questions are of rather fundamental nature, we are not the first
to discuss these problems. Related work, although treated from a different perspective,
can be found in, e.g., Richardson and Gerstner (2006).

In Section 4.1, we start with a short recapitulation of some fundamental statistical con-
cepts and use the opportunity to define important notations. We then study closed-form
solutions and approximations thereof for COBA and CUBA LIF neurons in Section 4.2.
In particular, we show how the high-conductance state enables us to find a good approx-
imation for COBA LIF neurons. Based on these findings, we move on to the description
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of statistical properties of LIF dynamic variables under balanced Poisson stimulation in
Section 4.3. We derive general expressions for the first two moments of the distribution
of a Poisson-driven dynamic variable and apply these findings to the synaptic current
and the membrane potential of LIF neurons. This enables a theoretical understanding
of the qualitatively different behavior of COBA and CUBA neurons at high input rates.
In Section 4.4, we then use our previous results to derive quantitative expressions for
shared-input correlations of LIF neurons, both for the free membrane potential and at the
level of spike trains.

A significant part of this work has been done in collaboration with Ilja Bytschok and
Johannes Bill and has been the subject of several technical internal reports dating back
to 2009-2011. Furthermore, the investigated subjects have also been the driving questions
behind the Diploma thesis by Bytschok (2011), from which we especially use material in
Section 4.4.
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4.1. Probability Theory: Essentials

As a short introduction to the following sections, we review several fundamental con-
cepts, definitions and notations from probability theory to which we will return repeatedly
throughout this work.

4.1.1. Random Variables and Probability Distributions

Consider an experiment that can produce several outcomes to which we attach some
uncertainty. We denote the (multidimensional) outcome of the experiment by capitals —
Z represents a set of random variables (RVs) — while a specific outcome z = (21, ..., zn)
is denoted by minuscules. The complete set of possible outcomes z is called the sample
space

n
0= HQ with z; € Q;
=1

(4.1)

where ] denotes a Cartesian product. Each outcome z can occur with a probability f(z):
(4.2)

f(Z) is called the joint probability distribution of the variables Zi,...,Z,. Similarly
to using f(z), when the interpretation becomes clear from the context, we shall use the
shorthand notation of P(z) in lieu of the more cumbersome P(Z = z).

If Q is discrete, in order for f to represent a probability distribution, we require

f(z) <1,vzeQ (4.3)

and
(4.4)

> flz)=1.

z€Q
If either Q or > f (2z) is finite, any mapping f:Q — R can be transformed into a valid

zeN
probability distribution by normalization:

(4.5)

4.1.2. Joint and Conditional Distributions

If one is only interested in the joint probability distribution over a subset of RVs, the total
PDF f(z) needs to be marginalized over all other RVs:

2. X

Zm+41 GQm+1 Zm—+2 EQm+2

Flo, ... (4.6)

Y ).

Zn €0

azm):

It is quite apparent that this operation is very demanding from a computational point
of view. The total number of operations required to perform marginalization scales
exponentially with the number of variables one needs to marginalize over. This can occur
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at its most extreme in normalization scenarios, where the denominator in Equation 4.5
represents a marginalization of the distribution over all RVs. The problem of marginal-
ization and normalization is a key issue in computational statistics and will represent a
focal point of Chapter 6.

If a subset X of the RVs are fixed to some value @, such as when they represent inputs
to the stochastic system, then the resulting distribution P(Y = y|X = x) over all other
RVs Y is called a conditional distribution. Conditional, marginal and joint distributions
are intimately linked through Bayes’ rule:

P(Y =y, X =)
P(X =)

PY =yl X =x) = (4.7)
Such conditional distributions are often called posterior distributions, in which context

the fixed or observed variables are referred to as evidence. The process of calculating
posterior distributions given evidence is called probabilistic inference.

A set of RVs {X;} is called mutually independent if and only if their joint probability
factorizes:

p(Xi=z,..., X, =x,) Hp (4.8)
A set of RVs is called pairwise independent if every pair of RVs in the set is independent.

4.1.3. Moments of Probability Distributions

Given any function g : Q — R, the quantity E[g(Z)] is called the expected value of g over
Z and is defined as

Elg(2) = 3 g(=)f(2) . (4.9)

zeQ

Depending on the context, we shall use E [| and (-) interchangeably, in order to improve
the readability of some equations. The n'! raw moments 1/, of a probability distribution
over a scalar RV Z are defined as the expected values of Z". The central moments are
the moments about its mean E[Z]. The first raw and second central moment are called

the mean and variance of Z, respectively, and are often denoted by uz and O'% (or simply
Var[Z]):

nz = 1(2) = E[Z] (4.10)
0% = Var[Z) == wy(Z — EIZ)) = E[(Z - pz)?] . (4.11)

oz is also called the standard deviation of Z. Similar to the variance, but for pairs of
RVs, the covariance is defined as

Cov[X, Y] = E[(X — ux)(Y — )] . (4.12)

A pair of RVs is called uncorrelated if and only if their covariance vanishes. In particular,
independent RVs are always uncorrelated. The converse is, of course, not necessarily true,
as can be easily exemplified by considering the case where p(Y = z|X = z) = p(Y =
—z|X =x)=1/2.
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In case of multivariate distributions, the mean is represented by a vector g and the
variance becomes a covariance matrix! 3:

pz = E[Z] (4.13)
Yz =Cov[Z,Z)=Var(Z] = E[(Z — p)(Z - p)'] (4.14)

with the covariance of two multidimensional RVs defined as
Cov[X,Y]=E[(X — px)(Y — py)"] (4.15)

The covariance can be transformed to a sometimes more convenient representation

Cov[X,Y] = EXYT] - pxpd . (4.16)
For a set of random variables {Z1, ..., Z,} of equal dimensionality, the following equa-
tions hold:

n ] n
E|> Z| =) E|Z] (4.17)

i=1 | =1

k n i kK n
Cov |> 2> Z;j| =) > Cov|Z;,Z;] . (4.18)
=1 g=k | i=lj=k

4.1.4. Continuous Random Variables

If © is an infinite subset of R™ (i.e, one has n constinuous scalar RVs), the equations above
remain, in general, unchanged, except that summations over (subsets of) € are replaced
by integrals. One additional concept is required, which is the cumulative (multivariate)
distribution function (CDF), defined as

F(z)=P(Zy < 21,22 < 23, Zn < 2n) (4.19)

which must satisfy the following conditions:
1. F' is monotonically increasing and right-continuous
2. lim F(z)=0

Z——00
3. lim F(z)=1

z—+30

If F' is absolutely continuous, one can define a probability density function (PDF) f(z)
which must satisfy

F(z) = / - / f(z)dz . (4.20)

! Sometimes, the covariance matrix is simply called a variance, regardless of the dimensionality of the
RV. This denomination is meant to show how the variance matrix of multidimensional RVs is a natural
extension of the scalar variance of scalar RVs. The term “covariance matrix”; on the other hand, points
towards the fact that individual matrix elements of Xz are, indeed, covariances between the scalar
components of Z.
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In particular, for any hyperrectangle Z" = Iy X - -+ x I, with I; = [a;,b;] € R, it holds

that
b1 bn

P(zeI") :/.../f(z)dz . (4.21)

In the limit of Z™ becoming infinitesimally small around some value zg, the probability for
P(z €1"™) — f(zg)dz of a continuous RV is the closest equivalent to P(Z = z¢) = f(20)
for a discrete RV Z (which is why we have chosen an identical notation f(-) for discrete
probability distributions and continuous PDFs).
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4.2. Closed-Form Solutions for the LIF Equations

In the following, we discuss closed-form solutions for the LIF membrane equations. We
shall see that, for the CUBA case, such solutions are more easily found. Despite the
fact that an exact solution for the COBA case can not be given, we shall discuss how
the high-conductance state enables us to find a quantitatively good approximation. Fur-
thermore, we discuss some counterintuitive properties of membrane statistics in the high-
conductance state that are observed in computer simulations, which we then treat ana-
lytically in Section 4.3.

4.2.1. Reformulation of the LIF Equation with an Effective Membrane
Potential

We have discussed in the introduction how neurons “integrate” their input, as long as they
are in the subthreshold regime. While this is, indeed, an essential property of subthreshold
membrane potential dynamics, it is often useful to adopt a somewhat different view. In
this section, we will introduce a new variable ueg, which will call an “effective membrane
potential”. This variable will represent a (linear) function of the input, while the true
membrane potential will become a low pass filter thereof. Up to a certain point, this
formalism applies to both COBA and CUBA synapses; the remaining — and important
— differences between the two models (as already mentioned in Section 2.2.2.1) will be
addressed in detail throughout the following sections.

We start by restating the set of equations that govern the LIF neuron model. For the
membrane potential, we have

Cm % = gl(El — u) +1 s (422)

where the input current I can be partitioned into an external background I°** (injected
directly into the neuron, be it in tissue or in software simulations) and a synaptic stimulus
current I5Y™:

I =14 v (4.23)

The total synaptic current Y™ obeys the equation

CUBA COBA
= 3 Z-Zyn (4.24) "= gzyn (E};e" —u) , (4.25)
synapses k synapses k

where 7" and g;”" denote the current/conductance arriving from the kth synapse (which,
themselves, are sums of PSCs). We can now define a total conductance g%, which
represents the sum of all the conductances that affect the membrane:

CUBA COBA

g*t =g (4.26) @ r=a+> " (4.27)
k
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an effective membrane time constant, which depends on g'**:

C,
Toff = gtj; , (4.28)

and an effective membrane potential, which can be expressed as a weighted sum of all the
mechanisms that affect the membrane (leak, external current, synaptic stimulus):

CUBA COBA

91E1+Iext +Z iiyn glE1+Iext +Z giyﬂE;;ev
k k
Ueff = ——ar (4.29) Ut = P : (4.30)

By dividing the RHS of Equation 4.22 by ¢*°* and rearranging the terms, we finally obtain

du
Teﬁa =Uef — U . (4.31)

The appeal of this formulation lies in its simplicity. By abstracting away the complex
interaction of external stimuli into an effective membrane potential, one can view the
membrane potential simply as a variable that decays exponentially (“leaks”) towards some
target value wueg(t). This effective potential encompasses the neuron’s own leak potential,
as well as all external stimuli — synapses in particular.

In this formulation, a hallmark effect of conductance-based synapses becomes immedi-
ately apparent: as synaptic bombardment increases, so does ¢*°* (Equation 4.27), resulting
in a smaller 7. and therefore in a faster membrane and smaller PSPs (see also Figure
2.23). The existence of this so-called high-conductance state (see Section 4.2.5) with
its accelerated membrane dynamics has important computational consequences, and has
been covered by vast amounts of literature?. In particular, it plays an essential role in the
LIF sampling framework discussed in Section 6.5. For now, we will use Equation 4.31 for
a formal derivation of the PSP shapes produced by exponential synapses.

4.2.2. Analytical Solutions for the LIF Equations: CUBA Synapses

Having unified the mathematical description of COBA and CUBA LIF neurons into a
common ODE (Equation 4.31), we can now attempt to find a unified solution for it. It
quickly becomes apparent that this is not possible in the general case.

Assuming the solution of the ODE

d
/(1) =) —a(t) - f(t) (4.32)

exists and is unique?, it takes on the form

F(t) = exp < / t —a(z) d:z:) [ / t b(z) exp ( / " aly) dy> dz + c} : (4.33)

2For a good review with a comprehensive bibliography, see Destexhe (2007).
3The Picard-Lindelsf theorem guarantees existence and uniqueness for our particular case, but it only
applies between two consecutive spikes.

86



4.2. Closed-Form Solutions for the LIF Equations

where | " g(z) dz denotes the antiderivative of a function g(t). For clarity, we now write
out the time dependencies explicitly. By setting

1
a(t) = @ (4.34)
and 0
_ Ueff
b(t) = () , (4.35)

we can now obtain the solution to Equation 4.31:

- ) [ ([ fiorne]

In LIF neurons with COBA synapses, g*°* depends explicitly on time. In the particular
case of exponential conductances (Equation 2.58), 7og is proportional to a sum of inverse
exponentials. Finding an analytical solution for u(t) therefore requires a closed-form
expression for [ ¢ explexp(z)] dx. Such an expression does not exist and therefore neither
does a closed-form solution for the membrane potential of LIF neurons with exponential
COBA synapses.

However, in particular situations, it is possible to effectively reduce COBA LIF neurons
to a CUBA-like description. Such a case will be made in Section (4.2.4) for the so-called
high-conductance state. We will therefore proceed to solving Equation 4.33 in the CUBA
case and return to this result later on.

We can start by plugging ¢*°, 7o and ueg from 4.26, 4.28 and 4.29, respectively, into
4.36 to obtain

LB+ I i

u(t) = exp (— /t fi) / - ol exp </x fi) de+C| . (4.37)

We further assume a constant external current stimulus I®*. After explicitly writing out
the synaptic currents (Equation 2.58), we can arrive at a closed-form solution for the
membrane potential of an LIF neuron with exponentially decaying CUBA synapses under
synaptic bombardment:

u(t) = M [(glEl + 1) /t exp ($) dx

91Tm Tm
t
T — Tg T
+/ Z Z wrO(t —ts) exp <_7'Zyn + 7_m> dx
syn k spk s
Iext T wy, t—t t—t
=E + + kOt —t [exp(—s>—exp <— S>} .
q Z Z gl (TZY _ Tm) ( 5) 7_zyn -

syn k spk s

(4.38)
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Figure 4.1.: Characteristic PSP shapes. PSPs are symmetric in 7, and 7" (blue line
and red dots). When 7, = 79", the PSP can be described by an a-function
(green line), which is similar in shape to generic PSPs (other lines). When
either time constant becomes very small, PSPs take on a “more exponential”
shape (black line).

Despite being somewhat lengthy, this equation paints a very intuitive picture. The
first two terms represent a constant offset given by the leak potential F) and the external
current 1**. The last term represents a linear superposition of PSPs which take the shape
of a difference of exponentials (DOE):

syn
Ty TmWk

PSP(1) = e ot —t,) [exp <—tTgyff> —exp (_t ;mts)] o (4.39)

reflecting the linearity of the ODE for the effective membrane potential (Equation 4.31).
The shape of a single PSP follows trivially from calculating '(¢) — u(t), where u’ repre-
sents the value of the membrane potential when a single spike, i.e., a single term in the
double sum, is added to the others.

A short discussion of the DOE PSP is in order.

The decaying nature of the membrane potential and synaptic conductance become
apparent in the exponential terms depending on 7y, and 75", respectively. Most notably,
the PSP is symmetric in 7, and 75", which is central to the analytical derivation of the
noisy LIF activation function in Section 6.5.3. However, there is one essential asymmetry:
due to the reset following a spike, the membrane potential itself has no memory of its
past. It may, however, react to stimuli that have preceded the spike, due to the fact that
the membrane conductance is not reset at the time of spiking. Therefore, independently
of plasticity and adaptation, a single neuron has a “synaptic memory” with a specific time
constant 75" that may stretch beyond its last spike, a property that is essential for the
LIF sampling framework described in Section 6.5.
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4.2. Closed-Form Solutions for the LIF Equations

In the limit of 79" — 73, the shape of the PSP becomes a function of the type t exp(—t):

t—t,

)
In literature, this is often called an a-function. As can be seen in Figure 4.1, the shape
of an a-PSP is qualitatively similar to that of a DOE PSP.

When either time constant (7, or 7") is close to zero, the PSP shape becomes “more
exponential” and the neuron reacts “faster” to afferent spikes - i.e., the maximum of the
PSP is reached sooner, although the amplitude decreases. This limit appears naturally
in the high-conductance state (see Section 4.2.5) and also plays an important role in the
discussion of probabilistic inference in networks of LIF neurons (Section 6.5).

On a final note, we need to repeat that the PSP shapes discussed above are not to
be confused with the PSC shapes discussed in Section 2.2.2. All neuron/network models
discussed in this manuscript are based on synapses which generate exponential PSCs,
which lead to DOE PSPs as an analytical solution of the LIF equation. The formal
similarity to DOE-PSCs is purely coincidental.

lim PSP(t) = %t exp (— (4.40)

TSR T m

4.2.3. The High-Conductance State I: First Observations

As already stated, it is not possible to find a general solution for the LIF neuron with
exponential COBA synapses as we just did in the case of CUBA synapses. However, a
good approximation for such a solution can be found in the high-conductance state (HCS).
We will set out by qualitatively describing the effects of the HCS on the membrane and
conductance dynamics and use these to find the abovementioned approximate solution to
the COBA LIF equation. Later on (Section 4.3), we will derive exact expressions for the
statistics of the synaptic input (be it current or conductance) and membrane potential.
As implied by its name, the HCS is characterized by a high total membrane conductance

g =g+> g" (4.41)
k

While “high” is not precisely defined in literature, it is usually assumed that in the HCS
the synaptic conductance is the dominant term in the total membrane conductance:

Y g =g > (4.42)
k

A high synaptic conductance can be achieved by either increasing the weight of single
synapses or by increasing the total number of incoming spike events.
unrealistic in a biological regime due to the small size (and thereby limited number of
ligand-gated ion channels) of single synapses. The latter, however, is quite common in
cortex, where individual neurons can have on the order of 10* presynaptic partners, each
of them firing, on average, at several Hz.

In a first approximation, we can model this scenario by stimulating a neuron with
two spike sources, an excitatory and an inhibitory one, each of them representing the
combined firing of all the excitatory and inhibitory presynaptic partners, respectively
(Figure 4.2). For simplicity, their firing rates are set as equal and their weights are scaled
with |EX®V — E)| in order to keep their PSPs approximately equal. As we ramp up the

The former is
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Figure 4.2.: Membrane potential statistics for different synaptic conductance regimes (sim-
ulation). A single COBA LIF neuron is stimulated by an excitatory and an

inhibitory Poisson spike source with identical firing rates.

Their synaptic

weights are normalized to their respective reversal potentials in order to keep
the process symmetric. The upper two plots show how the membrane po-
tential distribution first broadens and then narrows down again as the input
firing rates are increased. The lower two plots show the dependence of the
membrane potential distribution on the synaptic weight of the inputs: at
lower rates (bottom left), the distribution broadens, as expected, while at
higher rates, the synaptic weight has nearly no effect on the width of the
distribution. One can already observe that for all but the lowest input rates,
the membrane potential distribution can be well approximated by a Gaussian,
which will be explained in Section 4.3.
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total synaptic conductance by increasing the firing rates of the two sources, an interesting
and somewhat surprising effect occurs. At first, the width of the membrane potential
distribution broadens, as one would expect from a stronger stimulation. However, as the
firing rate increases further, the distribution becomes narrower once again. On the other
hand, at low firing rates, an increase of the synaptic weight results in a broadening of the
membrane potential distribution, again as expected. For high firing rates however, the
synaptic weight appears to have no effect on the distribution.

We shall see later how these effects can be understood in the framework of an analytical
description of the synaptic conductance and membrane potential statistics. For now, we
can restrict ourselves to the phenomenological observation of two properties of the HCS
that appear in the regime of high firing rates:

1) the membrane potential distribution becomes much narrower than the distance towards
the reversal potentials and

2) the membrane potential distribution is not (or only weakly) affected by the synaptic
weights.

From the narrowness of the membrane potential distribution, we can deduce that
3) the relative fluctuations of the total membrane conductance are very small,

since large conductance fluctuations would naturally result in large membrane potential
fluctuations.

We can now use these three observations to derive an approximative closed-form solution
for the COBA LIF equation which holds in the HCS in the same way we were able to do
for CUBA LIF neurons in general.

4.2.4. Analytical Solutions for the LIF Equations: COBA Synapses

Intuitively speaking, the difficulty of finding a closed-form solution to the COBA LIF
equation has two reasons: the dependence of the PSP amplitude on the momentary value
of the membrane potential (e.g., saturation as u approaches EXV) and the fluctuating
nature of the total conductance which leads to a non-constant effective (membrane) time
constant. In the HCS, these problems can be circumvented due to the narrow membrane
potential distribution, which leaves the distance |EL® — Ej| approximately constant, and
the small relative fluctuations of the total conductance, which render 7.4 approximately
constant as well. (In Section 4.2.2, we have given a more technical argument, which we
can now resolve in the HCS as well.)

However, the substitutions are not quite trivial, since if we simply replaced u and g**
with their average values, we would have no membrane dynamics left. We will therefore
treat the problem as perturbative and start by considering the effect of a single additional
single spike on ueg (Equation 4.30) coming from the jth synapse:

Ajueff(t) = ueff/(t) — Uef (1) (4.43)
QE + I+ 37 g (O EfY + €5 (t) EfY
k
= 4.44
70 T 6 () (4.44)
QB+ I+ 5 g (1) Ere
k (4.45)

g*ou(t) ’
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4. Dynamics and Statistics of Poisson-Driven LIF Neurons

where ueg’(t) denotes the time course of the membrane potential with the additional spike
and €;(t) represents the time course of the additional PSC. We have also made time depen-
dencies explicit in order to preempt any ambiguity when we later make approximations
of the sort f(t) = (f). Since we assume the amplitude of €;(t) to be small with respect
to g™°*(t), we can expand ueg’(t) in €;(t) up to first order:

QB+ I + % g () ERY

et () ~ e (4.46)
gtot (t)E;ev _ |:glE1 + Iext + Zk; gZYH (t)E;;ev
+ej(t) pE (4.47)
B () |3 — e (1)
= Ueff (t) + gtot (t) ) (448)

leaving us with the perturbative contribution of a single PSC to the total effective mem-
brane potential:

(1) [ = e ()]
gtot (t)

We can now write the effective membrane potential as an offset value plus the sum of all

Ajueg(t) ~ (4.49)

synaptic perturbations:

Uett (t) = uer” + D Agties (1) (4.50)
syn k
Zk: gr " () [ERY — uer(t)]
_ 0
= Ueff + gtot (t) s (451)

where we have returned to our previous notation

g =D Ot —t)e(t —ts) (4.52)

spk s

Finally, we can use our previous observations of the small fluctuations of ueg and g*°* for
replacing them with their average values, leaving us with

29 () (B — (uerr))

Uit (1) = et + = )

This approximation effectively solves the problem of finding a closed-form solution to
Equation 4.36. Since the total conductance can be assumed as approximately constant in
the HCS, the effective membrane time constant is no longer explicitly a function of time

(4.53)

Cim
Teft A (Teff) = o (4.54)
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so the third integrand in Equation 4.36 can be treated just like in the CUBA case. By
performing the following replacements in Equation 4.37:

g — (9" (4.55)
Tm — (Ter) and (4.56)
QB+ I+ 370" 20 (B — (uetr))
k — Ue? + - o (from Eqn. 4.53) , (4.57)
g g

we can obtain a solution that is analogous to Equation 4.38 for COBA LIF neurons in
the HCS:

—ate Z 3 gy o0 [ ()~ ()]

syn k spk s k (Teft)
(4.58)

with the shape of a single PSP being again a DOE:

psp(r) = T e (B~ ver)) g o (-t ) e (<120
Cm (Tky <7_eff >) Tky <Teff >
(4.59)

For now, we are still missing closed-form expressions for ueg", (ueg) and (7eg) in Equa-
tions 4.58 and 4.59. We shall first derive these in Section 4.3, as well as in Section 6.5.2
within the framework of an entirely different formalism. Let us, however, anticipate Equa-
tions 4.104 and 4.105 in order to demonstrate the validity of our closed-form expressions
for the CUBA and COBA LIF neurons.

In Figure 4.3, we compare the theoretical prediction of the membrane potential time
course (Equations 4.38 and 4.58) with the results from NEST simulations in the limits
of low- and high-frequency Poisson input. Both the CUBA and the COBA neurons were
stimulated with identical Poisson trains, one excitatory and one inhibitory. As expected,
the CUBA prediction is exact, since it is possible to integrate the membrane potential
equation analytically. For small input rates and weights, the COBA neuron behaves
almost identically to the CUBA one, since the total conductance, as well as the distance
towards the reversal potentials does not change significantly. For the HCS, where we
were able to formulate an analytical expression for the COBA membrane as well, the
prediction lies neatly on top of the simulation data, thus validating our approach. Note
how the COBA neuron behaves significantly differently from the CUBA one, despite them
receiving identical input. Not only is the membrane potential distribution narrower, as
already discussed in Section 4.2.3, but it also has a different time course (not being just
a “vertically compressed” version of the CUBA membrane potential time course). This
is a consequence of the CUBA neuron reacting to stimuli on much faster time scales
(Tet < Tm)-

Before moving on, we need to point out what may at first appear as a contradiction of
our premises. Note how the synaptic weight enters Equation 4.59 multiplicatively. This
might look like a potential invalidation of our perturbative argument: if one would in-
crease all synaptic weights, surely all PSPs would become larger and accumulate towards
larger membrane potential fluctuations. This is, in fact, not necessarily the case in the
HCS, as we have observed experimentally in the previous section: at high enough input
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Figure 4.3.: CUBA and COBA membrane potentials: analytical prediction vs. simulation
data (NEST). Both neurons received identical Poisson input of frequency v
from an excitatory and an inhibitory source, respectively. Left: low-frequency
input (v = 40 Hz). The two neuron models behave nearly identically, since
the weak input does not affect the total conductance and distance towards
the reversal potentials significantly. Right: high-frequency input (v = 5000
Hz). The COBA membrane has a smaller dynamic range, due to the <gt°t> in
the denominator of Equation 4.58. Its time course is also different, due to a
modified PSP shape (7o << 7). In all of the depicted cases, the theoretical
prediction agrees very well with the simulation results.

rates, the width of the membrane potential distribution becomes independent of the in-
dividual synaptic weights. Intuitively speaking, larger synaptic weights lead to a larger
total conductance and thereby to a smaller 7., which also enters the PSP amplitude mul-
tiplicatively. It turns out that these two effects cancel out at high firing rates, a formal
proof of which will be given in Section 4.3.5.

In summary, at this point, we have a full analytical description of the membrane poten-
tial and PSPs for CUBA LIF neurons in general and COBA neurons in the HCS (under
the assumption of exponential synaptic interaction kernels); for the latter however, we are
still missing closed-form expressions for (ueg) and (o). We shall derive these in Section
4.3. We can, however, already understand several properties of the HCS from the form of
Equations 4.58 and 4.59.

4.2.5. The High-Conductance State Il: PSP Shapes

The most apparent property of the HCS was already mentioned earlier, but now follows
directly from the equation describing individual PSPs. Similarly to the CUBA PSP, the
COBA PSP is a DOE where the membrane time constant 7,,, = Cp, /g1 has been replaced

by an effective time constant 7eg = Cy,/g*'. Since the HCS is defined by a large g*°t,
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the membrane time constant becomes very small, allowing the cell to react very quickly
to incoming stimuli. This already becomes apparent when considering Equation 4.31
in the limit of vanishing 7.¢: the membrane potential becomes approximately equal to
the effective membrane potential, which is a linear transformation of the total synaptic
conductance (Equation 4.30).

For the PSP shape, this can entail a reversal of the role of the membrane and synaptic
time constants. Note, again, the symmetry of Equations 4.39 and 4.59 in 75" and 7,
Or Teff, respectively: it is always the smaller of the two time constants which determines
the rising flank of the PSP. Typically, 7, > 75", so the rising flank of a (CUBA) PSP is
determined by 73" and the falling flank by 73,. In the HCS, these roles can be reversed,
with the small 7. causing a nearly instantaneous rise of the PSP to its maximum value.

In addition to the “more exponential” shape of the PSPs, the HCS also causes them to
shrink, due to (7.g) entering the PSP equation multiplicatively. This is a nice confirmation
of the small relative fluctuations of the membrane potential distribution discussed in
Section 4.2.3.

What we are still missing is a formal understanding of the somewhat counterintuitive
relationships between the input firing rate, the synaptic weight and the membrane poten-
tial distribution (Figure 4.2). For this, we shall now investigate the statistical properties
of additive Poisson processes.
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4. Dynamics and Statistics of Poisson-Driven LIF Neurons

4.3. Single-Neuron Statistics

In this section, we begin by deriving general closed-form expressions the distribution of
Poisson-driven dynamic variables. Using the results from the previous section, we can
then find quantitative expressions for the distributions of the synaptic input and the
membrane potential of both CUBA and COBA LIF neurons. These will also allow us to
explain the interesting “anomalies” found in the computer simulations of COBA neurons
from the previous section.

4.3.1. Statistics of Additive Poisson-Driven Processes

We begin by addressing the general problem of a dynamic variable controlled by a Poisson
point process. Later on, the equations we derive here can be applied to different intrinsic
neuronal variables, such as membrane potentials, input currents, synaptic conductances
etc.

Consider a random variable Y (7') € R. Let its evolution in time be determined by a
Poisson process with rate A that triggers events at times ¢;, which cause changes in Y (),
given by some kernel x(t — t;), that sum up linearly. Our goal is to find the first two
moments of the distribution of Y, i.e. its mean E[Y] and variance Var[Y].

Note how we have explicitly dropped the time dependence in the characterization of
the distribution of Y. This is neither an omission nor trivial, but rather a consequence of
the ergodicity of the dynamics of Y. We will address the ergodicity of Markov processes
in a more formal fashion in Section 4.1. For now, it is only important to know that
the Poisson process is ergodic - and by extension also Y(¢), since it is fully determined
by a Poisson process. The distribution of Y (¢) over time is therefore equivalent to the
distribution of Y (T') at a fixed time T over all its possible histories (“distribution over
trials”). We will make use of this property in our formal derivation of E[Y] and Var[Y],
which is easier to perform in a trial-based setting.

Let us start by considering a time interval ¢t € [0,7"). From the linearity of changes in
Y (t), it follows that
Y(T)= > &(T-t;) . (4.60)
0<t;<T
Assuming that exactly n events have taken place in [0,7), it follows from the definition
of the Poisson process that each event has an equal probability of occurring at any time
tel0,T):
pn(ti) := p(ti|n events) = % . (4.61)
Since events generated by a Poisson process are, also by definition, independent, the times
t; follow a multivariate uniform distribution:

n
1

Pr(ti, ... tn) == p(t1,...,tn|n events) = Hpn(ti) =n (4.62)

i=1

The probability for the Poisson process to produce n events in [0,7") is
AT n
e (AT

pa(n) = n(, i (4.63)
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So we can now write, using Bayes’ rule:

p(n,t1, ... tn) = pp(t1, ... . to|n)pa(n) = Fef)‘T (4.64)

With Equations 4.64 and 4.60, it is now possible to calculate the moments of Y (7). In
the limit of T — oo, these become equivalent to the moments of Y.

From the definition of the expectation value, it follows that

Z/dtl /dt Y(T,n,t1, ... tn) p(n,t1, ... ty)
_Z/dtl /dtn k(T )%e AT (4.65)

nOO

We can rearrange the terms depending on their running variables and use the linearity of
the integral operator ([ Y. =3 [) to obtain

T T
E[ 7)\T z;) . z;/dtl /dtn IQ(T — ti) . (466)
= =0 0

For any i € {1,...,n}, the integrand (T — t;) only depends on a single running variable
t;, so it factors out of all but one of the integrals:

T T T T T T T
/dtl e / dtn H(T — ti) = /dtl e / dtifl /dtprl e /dtn / d — tz
0 0 0 0 0 0 0

n—1 independent variables
T

_ / dt (T —t) (4.67)
0

leaving us with
T

E[Y(T)] =e irj zn:T”‘l/dt k(T —t)

n=0 =1 0

T
0 )\Tnl

=T n_ll/dtn(T—t)
\0_,_/

0

T
= )\/dT K(T) (4.68)
0
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In the limit of T"— oo, we obtain the desired expectation value of Y:

E[Y] = A / dr k() . (4.69)
0

For calculating the variance of Y, we can use the univariate case of relation 4.16:
Var[Y] = E[(Y — E[Y])?] = E[Y? - E*[Y] . (4.70)

With Equation 4.69, the second term can be easily written down as

00 2

E*[Y] = \? / dr k(T) (4.71)
0

For the first term, we can use the definition of the expectation value and find, equivalently
to 4.65 and 4.66:

DISIEDY

T T
/dtl.../dtn Y3(T,n,t1,. .. tn) p(n,t,... tn)
n=0 7 0
— Z /dtl.../dtn k(T —t;) —‘e*)‘T
n=0 7 0 i=1 n:
_ AT zg)n' /dtl.../dtn [Z} k(T —t;) (4.72)
n= 0 0 =

By exlicitly squaring the sum we obtain

[Z w(T —t;)

i=1

n

> KT = t)R(T — t) (4.73)

7j=1k=1

2 n
=> KT —t;) +
=1

We can now plug this back into the multiple integral in the expression for E[Y%(T)] and,
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for any triple (i, j, k), perform a similar factorization as in Equation 4.67 to obtain

T T n
/dtl.../dtn ZKJ(T—ti)
0 0 '

2

n n

T T [ n
:/dtl.../dtn D ORAT —t)+ Y > k(T = t)k(T — t5)
0 0 Li=1

i=1 j=1
n T T T T T

= /dtl.../dti_l/dtm.../dtn/dti AT —t;)
=179 0 0 0 0

n—1 independent variables
T T

3
3

0 0

T T T
+ /dtl.../dtj_l/dth.../dtk_l/dtkﬂ..
j 0 0 0

|

dty,

n—2 independent variables

T T
=i /dt KT —t) + n?T" 2 /dt w(T —t) ,
0 0

2

which , similarly to Equation 4.68, leaves us with

. T
EY*(T)] = ) L' nTm 1 / dt K*(T —t) + n?T" 2
n.
0

n=0

/

T
_ = (AT) ! = (\T)"2
=M AEj((n_)l)!/dt AT t)+A2§j((n_)2)!
n=0 0 n=0

T T
:A/dt;-@?(T—t)+/\2 /dm(T—t)
0 0
T

T 2

S / dr K2(r) + A2 / dr K(r)

0 0

In the limit of T' — oo we therefore obtain

o0 o0

2

E[Y?] = )\/dr K2(T) + N2 /dT K(T)

0 0

dt;

/

dtk K(T - ti)li(T — tj)

(4.74)

(4.75)

(4.76)

This can now be plugged, together with the expression for E2[Y] (Equation 4.71) into
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variance of  KEquation 4.70 to obtain the sought variance of Y:

a Poisson- 00
driven li
riven linear Var[Y] = /\/dT K2(1) . (4.77)
process
0

We complement the results of this formally rigorous, trial-based approach by a less
formal but more intuitive picture, in which we consider the evolution of Y over time.

Consider a time window [0,7) which is much larger than the duration* of a single
kernel k. Assume that Y is stimulated by a single event at some random time ¢;. The
time-average of Y over [0,7) is given by

ElY;] = Els(t —t)]
= jl_l/dt H(t — tz‘) . (478)
0

For N events, the expectation value becomes

N
> Y
=1

(4.17) N
20N B w(t 1)
=1

E[Yy]=E

T
(4.78) % / dt (t—t;) (4.79)
0

On average, a Poisson process with rate A produces E[N]| = AT events in a time 7.
By plugging this into Equation 4.79, performing an appropriate change of variables and
taking the limit T — oo, we recover the result from Equation 4.69:

E[Y] = A / dr k(7). (4.80)
0

Similarly, for the time-variance of a single kernel, we have

vary;] "2 B[v?) - Bv))
2

T
1 1
dt K*(t —t;) — =2 /dt r(t —t;) (4.81)
0

T

St~

4 We loosely define the duration of a kernel as the time interval over which it is significantly different
from 0. For example, we could choose the duration of x(t) as the length At = ¢ — ¢1 of the shortest

to [ee]
interval [t1,t2) with the property that [x(¢)dt > (1 —€) [ |x(t)|dt for some predefined “allowed

t1
relative error” e.
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4.3. Single-Neuron Statistics

In a Poisson process, events arrive independently of each other, so Cov[Y;, Y;] = d0;; Var[Y;].
Therefore,

N
Var[Yy| = Var Z Y;

i=

L18) Z Var[Y;]

i=1
T N T
/ ti) — T2 /dt K(t —ti) (4.82)
0 0

As above, we can now replace N with E[N] = AT, perform a change of variables and let
T — oo (whereby the second term vanishes) to recover the result from Equation 4.77:

=

H\Z

[e.o]

wmn:x/mm%ﬂ. (4.83)

0

Note how we have arrived independently at the same results using first the distribution
over trials and then the distribution over time - as expected given the ergodicity of Y. We
can therefore use the derived moments of the distribution in both contexts, whether we
discuss large populations of stochastically equivalent Y-type RVs or long measurements
of an individual Y. Finally, due to the linearity of Y, Equations 4.69 and 4.77 can be
easily generalized to stimulation by n independent Poisson processes:

[e.e]

ZM/M@) (4.84)
Var[Y Z)\k/dT K; } (4.85)

4.3.2. The Gaussian Approximation

In the previous section, we have calculated the first two moments of the distribu-
tion of an additive Poisson process, but have made no statement about the shape of
the distribution itself. This could be done by calculating all central moments up to
some order, which would (almost) uniquely determine the distribution. However, we will
provide a more intuitive argument here and follow up with a formal proof in Section 6.5.2.

Consider, again, the value of Y at the end of the time window [0,7) from the last
paragraph. Each event causes a change in Y (T') that can be considered as an RV of its
own:

Y; :=Y (T | a single event has occurred at t;) . (4.86)

As the distribution of ¢; is flat (due to the events being generated by a Poisson process)
and the kernel xk does not diverge in either direction, we can assume that the PDF of Y;
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4. Dynamics and Statistics of Poisson-Driven LIF Neurons

does not have any particularly nasty characteristics.® Due to the Poisson nature of the
generating process, the Y;-RVs are independent and identically distributed (IID). With
our definition of Y;, Y(T") can now be written as a sum over our newly defined RVs

Y(T) = zn:Y . (4.89)
=1

The central limit theorem (CLT) of probability theory guarantees that a sum of n IID RVs,
each with moments p and o, converges almost surely to a Gaussian in the limit of large
enough n (n — oo). For a high Poisson event rate A, the number of events n = AT can
become arbitrarily large as well and therefore CLT applies to Y (T), rendering p(Y (T)|n)
Gaussian:

p(Y(T) = yln) —— far(y, np,no?) . (4.90)

The number n of events itself follows a Poisson distribution (Equation 4.63), which in
the same limit of large AT can be well approximated by a Gaussian distribution with
mean and variance both equal to \T":

n—oo

pa(n) —— fx(n, AT, AT) . (4.91)

With Bayes’ rule, we can now write

p(Y(T)) = / p(¥(T),n) dn = / p(¥ (T)[m)pa(n) dn (4.92)

n n

Such an integral over a product of Gaussians can be shown to yield a Gaussian as well
(Bishop, 2009). As in the previous section, we can now invoke the ergodicity of Y to
argue that the distribution of Y (7) over mutliple trials (which we have discussed above)
is equivalent to its distribution over time. We can therefore conclude that if the Poisson
rate is high enough, the distribution of any additive Poisson process is Gaussian, with a
mean and variance given by Equations 4.84 and 4.85. As we now have a full statistical
description of additive Poisson processes, we can move on to predict the distribution of
input currents, conductances and membrane potentials of the previously discussed LIF
neuron models.

4.3.3. Current and Conductance Statistics

Under the assumption of identically shaped PSP kernels, the Poisson-driven synaptic input
of CUBA and COBA neurons looks the same, up to the synaptic weight - a multiplicative

® For a monotonically decreasing x we can calculate the CDF of Y;:

1
PYi <) = p(s(T 1) <y) =plte < T— 7' (y)) =1~ " (4.87)

and from there its PDF: o 10
p(Yi=1y) = @p(n <y) = fafyffl(y) : (4.88)

For non-monotonic kernels, the support of £ can simply be partitioned into a set of intervals on each
of which k is monotonic and the CDF becomes a sum of terms that have the same form as the one in
Equation 4.87.
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Figure 4.4.: Probability distributions of Poisson-driven input current and conductance:
theoretical prediction vs. simulation results (NEST). Excitation and inhibi-
tion were chosen to be balanced (identical firing rates and identical-amplitude
but opposite-sign PSPs; for the COBA neuron, this implied a rescaling of the
synaptic weights with EX®V — Ej). The average total input is therefore zero
for the CUBA neuron, but nonzero in the COBA case, as conductances are,
by definition, non-negative. An increased firing rate (while maintaining the
balance) only results in a broader distribution of the total synaptic input for
the CUBA neuron. In the COBA case, both the mean and the variance of the
distribution increase. The increase of the mean total synaptic input is essen-
tial for achieving a HCS. Altogether, the theoretical prediction is in excellent
agreement with the simulation data.

factor typically expressed in nA or uS, respectively (compare Equations 2.55 and 2.58).
For exponential synapses, the interaction kernel is given by
t
K(t) = wiO(t) exp(—Tsﬁ) . (4.93)
k

We can now use Equations 4.84 and 4.85 to obtain the mean and variance of the total
(Poissonian) synaptic input:

o

t n
E[f"] = o(t ——) dt = R 4.94 d
[F) Zuk / wO(1) exp(~ 1) Swnr (490 mean an
k=1 variance of
2 n .
— t _ 1 9 sm the synaptic
Var[f"] = Zyk/ [wk(% exp(—szn)} dt —;2wkukrk ) (4.95) input

where f5" represents the total synaptic current or conductance and v the input fre-
quency at the kth synapse. Figure 4.4 shows a comparison of the predicted distributions
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4. Dynamics and Statistics of Poisson-Driven LIF Neurons

to simulation data. Note how opposing currents (excitatory and inhibitory) may cancel
out in the CUBA model, as, e.g., reflected by the zero mean current in the figure. This
can not happen in the COBA case, in which all conductances are (by definition) strictly
non-negative. This “feature” of conductances is what enables the HCS in the first place.

Before moving on to membrane potential distributions, we need to point out a particular
feature of the input distributions. As one would already expect from the invocation of
the CLT in the previous section, the width and mean of the input distributions must
increase as the number of PSC kernels in an interval [0,7") increases, but their ratio
(or relative width) must decrease. Indeed, as the abovementioned “kernel frequency” is
actually the Poisson rate v, both phenomena follow directly from Equations 4.94 and 4.95.
In particular, for a single input source, the width-to-mean-ratio takes the form

[U} e L (4.96)

Z S

which converges to 0 as v increases. In particular, this validates the assertion we made
in Section 4.2.3 about the relative fluctuations of the total membrane conductance being
very small. We will make use of this hereby rigorously derived property of the HCS in
the following section.

4.3.4. Free Membrane Potential Statistics

We now turn to the distribution of the membrane potential of Poisson-driven LIF neurons
with exponential synapses. In particular, we are interested in the free membrane poten-
tial, i.e., the firing threshold @ is set high enough to prevent the neuron from spiking.
Again, we can use the mean and variance Equations 4.84 and 4.85 and apply them to
the CUBA (Equation 4.38/4.39) and COBA (Equation 4.58/4.59) equations/PSP kernels.

For CUBA neurons, the calculation is straightforward. For the expectation value of the
membrane potential, we obtain
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4.3. Single-Neuron Statistics

For COBA neurons, we have initially assumed that we are able to find expressions for
tet®, (Uegr) and (7eg) in order to calculate the PSP shape, so we need a slightly different
approach. In Section 4.2.1, we have already derived an expression for ueg in Equation
4.30. Now, we just need to calculate its expectation value:

glEl + Iext + Z g]SCyHE;;eV
k

Syn

a+> 9
k

Eluet] = E (4.99)

In the previous section, we have argued that in the high-frequency regime, the relative
fluctuations of the synaptic conductance become very small. This permits a replacement
of all g;”" by their expectation values (Equation 4.94), leaving us with

glEl + Iext + Z kaleiynElrcev
k

Elueg] = (4.100)

syn
g+ > wrrTy
%

Note the similarity with the equivalent equation for CUBA neurons (Equation 4.97),
which could have been derived identically from the expression for ueg in the CUBA case
(Equation 4.29). In the same approximation, the average effective time constant can be
written as

T = =
RG] T g S wnry”
k

(4.101)

We can now derive an expression for u.g” from the assertion that calculating the expec-
tation value of Equation 4.53 must be self-consistent:

Zk) 91" () (B — (uerr))
o (4.102)

!
FElueg) = ueg” + E

By using the newly derived expressions for Elucg] and E[g*°"], we obtain

2B 95" (V)] (B — Eluer])

Ueffo = E[ueff] - <gt°t>
(Eqns. 4.100,4.101)
_ I (E[ueff] — B - Im) (4.103)
E[gtY] 9

We can now proceed to calculating the moments of the membrane potential distribution
analogously to the CUBA case. The expectation value F[u] must be identical to E|ucg],
since u is merely a low-pass-filtered version of ueg (Equation 4.31). A formal calculation
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Figure 4.5.: Free () — 0co) membrane potential distributions of Poisson-driven CUBA and
COBA neurons: theoretical prediction (crosses) vs. simulation results (con-
tinuous lines, NEST). The simulation parameters are identical to the ones
from Figure 4.4. The balanced input regime (on average, excitation and in-
hibition have the same impact, i.e., identical rates and identical-amplitude
PSPs) is reflected by a constant mean membrane potential, which lies at the
resting potential of £ = —60mV for both neurons. In the CUBA case, an
increased input rate manifests itself in an increased variance of the membrane
potential (Equation 4.98), which is a direct consequence of the increased vari-
ance of the input current (see Figure 4.4). In the COBA case, the input
conductance distribution becomes broader as well, but in the HCS a result-
ing broadening of the membrane potential distribution is countered by an
increased total conductance (Equations 4.101 and 4.105), in the end leading
to an opposite effect (compare also with Figure 4.2, top right). Again, the
theoretical prediction is in excellent agreement with the simulation data.

using Equations 4.58 and 4.84 yields the same result:

B = ueﬁ0+f3”kj o0 [ () oo ()

k

n syn rev
0 wpvpTy (B — (uert))
) ; (g'")
E [ue]
b+ 7ext + Z wkl/kTZynE]zeV
k

(Eqn. 4.103)

(Eqn. 4.100)

- 4.104
g1 -+ Z ’kaszyn ( )
k
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For the variance, we obtain

- PR@T?“@$V—a@wq2w%%<va>+T?“_2<umf?“>
L Cnl({mem) =707 U2 2 TR

(4.105)

where (uesr) and (7.g) are given by Equations 4.100 and 4.101, respectively.

Figure 4.5 shows the excellent agreement between the above theoretical predictions and
simulation data. Excitatory and inhibitory inputs are balanced, so the average membrane
potential lies at the resting potential £} = —60mV. In the CUBA case, the frequency
dependence of the variance (Equation 4.98) is reflected by the broadening of the distribu-
tion at a higher input rate. Interestingly , the opposite appears to happen in the COBA
case: the variance drops slightly with increasing input rate - as evidenced by the higher
peak of the normalized PDF. This mirrors our previous observations from Section 4.2.3
(Figure 4.2). With Equations 4.105, 4.100 and 4.101, we are now able to explain all of
our experimental observations, which we do in the following section.

4.3.5. The High-Conductance State lll: Theory vs. Experiment

We have previously defined the HCS as a state where the synaptic conductance dominates
the total membrane conductance (Equation 4.42). In general, this is assumed to be the
result of a high-frequent synaptic bombardment. We can now analyze how the variance
of the membrane potential distribution behaves in this regime.

In the limit of high input rates (and non-vanishing synaptic weights), the effective time
constant (Equation 4.101) goes to zero:

S vp—oo

-1
E[Teff]O((ZVk) LS (4.106)
k

We can therefore neglect all additive (7.g)-terms in the variance of the membrane poten-
tial, leaving us with

Z Vi —r00 n 2 s
% Erev _ yn
Var[u] |:<Teff> ( k:(j <ueff>):| w]%VkaT
k=1 m
| S wpnr™ (B — {uen))
k
_ . - (4.107)
(™)
k
1
' 4.108
X z Vszyn ( )
k

This result immediately implies two conclusions about the properties of the HCS:
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12

=)

Figure 4.6.: Variance of the membrane potential of an LIF neuron when stimulated by
Poisson inputs as a function of the input rate and synaptic input weight. For
CUBA neurons (left), it increases linearly with the rate and quadratically with
the weight, as follows directly from Equation 4.98. In the COBA case (right),
the variance behaves similarly in the low-conductance regime (small input
rates and relatively small weights, in the foreground of the figure), which is
not surprising, as in this regime COBA and CUBA neurons are functionally
identical. For increasing input rates however, the variance reaches a peak and
then drops off again, going to zero in the limit of large input rates (background
of the figure). In this regime, the variance effectively loses its dependence on
the synaptic input weights. This theoretical prediction precisely mirrors the
phenomena shown in Figure 4.2.

1) the variance of the membrane potential is (approximately) inversely proportional to
the total input rate and

2) the variance of the membrane potential becomes largely independent of the synaptic
weights,

which precisely mirror the experimental observations from Section 4.2.3. As argued in
Section 4.2.5, our third assumption concerning the small relative fluctuations of the mem-
brane potential now follows directly from the inverse input rate entering the PSP height
multiplicatively (see Equations 4.59 and 4.101).

The full w™ and v*" dependence of the membrane potential variance can be seen in
Figure 4.6 for both CUBA and COBA neurons. In the CUBA case, the variance scales
quadratically with ws" and linearly with 5" as evidenced directly by Equation 4.98.
The COBA variance starts off similarly to the CUBA variance in the case of small input
rates: the intersection of the variance surface with the w*"-Var[u]-plane (left foreground)
is quadratic, whereas its intersection with the v*Y"-Var[u] plane starts off as linear (right
foreground). For high input rates, the trend is reversed: the variance reaches a maximum
and then begins to drop, ultimately becoming nearly independent of w*™, as evidenced
by the surface becoming almost flat in the w"-direction.
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4.3. Single-Neuron Statistics

The independence of the free membrane potential variance on the synaptic input weights
in the HCS is not only an interesting phenomenon, but may play a significant role during
learning. In many scenarios where neural networks learn to perform certain tasks, be
they biologically plausible or more abstract, but useful for, e.g., machine learning, it
turns out that homeostatic mechanisms can be a potent ingredient (see, e.g., Habenschuss
et al., 2012). In broad terms, homeostasis ensures that the output of a constituent unit
in a network remains unchanged despite changes in its input. If we assume that the
connectivity of a neural network remains unchanged (no structural plasticity) — which
is a simplifying, but common assumption in computational neuroscience and machine
learning — then the only changes that a neuron experiences in its input are changes in its
afferent synaptic weights. If we further assume that the output spike train of a neuron
depends only on the dominant time constant in its dynamics (which, in the HCS, is the
synaptic one) and on the moments of its membrane potential distribution (we shall provide
a rigorous treatment of this conjecture in Section 6.5.3), and the ratio of excitation to
inhibition remains balanced, then the w*™-independence discussed above directly provides
a neuronal homeostatic mechanism. Most interestingly, this feature is not added to the
network by virtue of additional dynamic components, but rather a direct consequence of
the LIF dynamics in the HCS. In other words, this form of homeostasis is, by default,
built into the physics of COBA LIF neurons.
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4.4. Shared-Input Correlations of Neuronal Dynamics

When an overlap between the presynaptic populations of two neurons exists, it induces
correlations in their behavior, even if the two neurons have no direct synaptic connec-
tion. In this section, we discuss quantitative measures for these shared-input pairwise
correlations. Building on the expressions derived in the previous sections, we can now
make quantitative predictions of shared-input correlations both for the free membrane
potential and for the spike trains of neurons with partly overlapping Poisson background
pools.

4.4.1. Multivariate Distributions and the Correlation Coefficient

We shall start by extending our conclusions from Section 4.3.1 to multivariate distribu-
tions of additive Poisson processes. In Section 4.3.2, we have argued that a single additive
Poisson-driven RV will follow a Gaussian (marginal) distribution, with a mean and vari-
ance given by Equations 4.84 and 4.85, respectively. A set X of such RVs will therefore
follow a multivariate Gaussian (joint) distribution, which is defined by the PDF:

flo. ) = o e |~y le - W S @ )| (4.109)
where the mean vector p is defined as
pi=E[X] |, (4.110)
~57.5
2 -60.0
H§—62.5 W\M
~65.0
o I TN OV O \H i
=3
. LA Y
= —60.0
~i-625 M
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Figure 4.7.: Two conductance-based LIF neurons, each with a total amount of excitatory
input channels of Syt = 7. They consist of Syi, = Sy, = 2 “private”
input channels for each neuron and Sys = 5 input channels shared by both
neurons. As expected, the membrane potential time course is very similar,
due to the high proportion of shared inputs, but not identical. In this section,
we discuss quantitative measures for their degree of similarity. Figure taken
from Bytschok (2011).
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4.4. Shared-Input Correlations of Neuronal Dynamics

3 represents a covariance matrix with elements
3= COV[XZ', X]] 5 (4111)

and |X| denotes its determinant.

In the following, since we will later investigate second-order (pairwise) correlations
between neural state variables, we will restrict ourselves to bivariate distributions, but
this framework can be straightforwardly extended to correlations of any order. For two
RVs X7 and X5, the multivariate Gaussian from above reduces to

1
20’102\/1 — ,02

where Z; and Z, (with their respective values z; and z3) represent normalized versions of
the original RVs:

flxy,x2) = (21 + 25 — 2p2122) | (4.112)

1
exp |———
2-(1-p?)

T, — To —
=T 2T (4.113)

o1 02
In this notation, the covariance has also been normalized to the Pearson product-moment

correlation coefficient (or simply correlation coefficient CC)

_ COV[Xl, XQ]
B 0109

= COV[Zl, ZQ] y (4.114)

which lets us rewrite the covariance matrix as

2
2:( 1 ’”102) . (4.115)

2
pPO102 05

This is a more convenient notation, since the CC is a bounded measure of the correlation
between RVs® and is also insensitive to linear transformations of the sample space €, as
follows directly from Equation 4.114. In particular,

px1xs € [-1,1] (4.118)

with the extreme values 1 and —1 representing a linear dependence of X; and Xo, i.e., per-
fect correlation and anticorrelation, respectively. For independent variables, px, x, = 0.
Due to these useful properties, we choose the CC as the measure of choice for correla-
tions between continuous, real-valued RVs. In the following sections, we shall use the
previously found equations for the membrane potential distribution in order to predict
neuronal shared-input correlations in the subthreshold regime.

Following all of the above, Figure 4.8 shows two examples of how we expect the mem-
brane potential distributions to look like for a pair of LIF neurons. Here, we only show the

6 The relation
|Cov[X,Y]| <oxoy (4.116)

follows directly from the Cauchy-Schwartz inequality for the inner product space of square-integrable
functions (to which finite-variance Gaussian PDFs belong by definition)

2

[ f@i@) da

< [ W@F da- [ gl do. (4.117)

R”

111

bivariate
Gaussian

correlation
coefficient



180-
probability
loci of
bivariate
Gaussians
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special case of 1 = puo and o1 = o9. In general, iso-probability loci are ellipses centered
at u, with the projections of their axes being proportional to o1 and o9, respectively. For
some probability density p, the iso-probability locus follows directly from Equation 4.112:

1, 2 1,
g2 —2=1 4.119
7Y T Rt Y , ( )

which is the canonical form of an ellipse, where

R=-2(1-p*)In (2p0102\/1 - p2) . (4.120)

For uncorrelated RVs (p = 0), the main axes of the ellipses are parallel to the RV axes.
For correlated RVs (|p| > 0), the ellipses become tilted and squeezed towards the line

y(@) = sgn(p) 2@ — pa) + 1y - (4.121)

T

v, =V Py, >V

-63  —62 —61
Vi [mV]

Figure 4.8.: Two examples of bivariate normal distributions of neuron membrane poten-
tials with identical means and variances. Left: independent inputs. Right:
some inputs are shared, causing the membrane potentials to have positive
correlation. The colormap represents the height of the joint density func-
tion f(u1,u2) (red is high, blue is low). The continuous lines represent iso-
probability loci and have an elliptical shape. Figure taken from Bytschok
(2011).

4.4.2. Derivation of the Free (Subthreshold) Membrane Potential CC

Let us start by considering the general case of two LIF neurons that are fed by multiple in-
dependent Poisson sources which we denote by their indices ¢ € {1,...,n}. These sources
are characterized by their rates v = (v, ...,1,), by the synaptic weights via which they
are connected to the two neurons wy = (wi1,...,wi,) and we = (waq,. .., way,), as well
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4.4. Shared-Input Correlations of Neuronal Dynamics
as by their respective time constants 7;°" = (77", ..., 7o) and 75" = (15] ", .., Ton).T
Furthermore, the neurons themselves may have different parameter sets, which we denote
by P; and P,. What we are looking for is an expression for

syn __syn

pul,'UQ :p(P17P27w17w27 1 TQ 7’/) . (4122)

We have shown previously (Section 4.2) that the membrane potential of CUBA LIF
neurons in general and COBA LIF neurons in the HCS can be written as a sum over
PSPs from individual spikes (Equations 4.38 and 4.58). Due to this linearity, we can
group the PSPs by their synaptic source and write the membrane potential as a sum over
all input sources of the contribution of each individual source:

wi=> up (4.123)
k=1

where each w;, is a Poisson-driven stochastic process with mean and variance given by
the equations derived in Section 4.3.4. We can exploit the bilinearity of the covariance to
find

Cov|uy,ug] = Cov Zulk,Zugj
k=1 j=1
=> > Covluyk, ug;] - (4.124)
kg

Since we have defined the individual Poisson sources as independent, the membrane po-
tential contributions that they generate are also independent and therefore uncorrelated:

k 7&] - Cov[ulk,ugj] =0 , (4.125)

which allows us to further simplify the membrane potential covariance equation:

Covluy,ug] = Z Covluyg, ugk] . (4.126)

For calculating Cov|uqg, usx|, we can use the same formalism as we did in Section 4.3.1
for the variance of Poisson-driven processes. All we need to do is replace the terms F [Yz]
and E?[Y] by E[XY] and E[X] E[Y], respectively, where X and Y are both Poisson-
driven processes that have the same rate A but different kernels kx and xy, respectively.
In particular, Equation 4.76 transforms to

E[XY]= A/dT kx(T) +/\2/d7' rx (T /dT ry (T (4.127)
0 0 0

" Here, we explicitly allow the violation of Dale’s law, which would, in principle, not only require
sgn(wi;) = sgn(wi;), but also 777" = 757", since the synaptic transmission should be mediated by the
same type of neurotransmitters (see Section 2.1.3). However, Dale’s law does not necessarily apply
to artificial neural networks in general. In particular, allowing it to be violated turns out to be quite
useful, such as for various types of neuromorphic hardware or for the specific class of networks we

discuss in Chapter 6.
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4. Dynamics and Statistics of Poisson-Driven LIF Neurons

and Equation 4.71 becomes
EIX|E[Y] = /\Q/dT rx (T /dT ry (T (4.128)
0 0

With this, we can now write

[e.o]

Cov[X, Y] = A / dr kx(T)ey (r) . (4.129)
0

We can now calculate the subthreshold membrane potential CC explicitly. The CUBA
and HCS COBA kernels are given by Equations 4.39 and 4.59, respectively. In the CUBA
case, the covariance becomes

(Egns 4.129, 4.39)

Cov|ui,usg]
n 2 syn
> | Hw Tk T
= k ik syn
k=1 ; Cmi (Tz‘k - Tmi)
syn syn syn syn
% ( Tk Tok Tm1Tm2  T1p Tm1  Top Tm2 >:| (4 130)
Syn Syn Syn Syn . :
e T Ton Tm1 + Tm2 T, T Tm1 Tor T Tm2

With Equation 4.98 for the membrane potential variance, we obtain for the CC:

Puris = (V ’w1,’w277'1 , T 7¢12) 7 (4.131)

'Hl \/7T (V7 w;, Wi, Tl‘syn7 anl)
1=

For a simplified representation, we have defined the kth elements of the vectors ¢;; and

P; as

syn__syn syn TSynT

ik gk TmiTmj TLk Tmi ik 'mj
ik = AT T R ng T s T g and (4.132)
ijk ( syn . ) syn . ’

Tik mse ]k mj
syn syn
Tmi | T TmiTj,

i = 2 Tk : (4.133)

2 2 Tmi + 7, ik

respectively, and the function 7(-) as

T(V1,...,0p) = Z Hvik ,  with dim(v;) =n . (4.134)

k=11i=1

It is interesting to note yet another very useful property of the CC: in the CUBA
case, apart from the configuration of the stimuli given by {v, w1, wq, 7", 757"}, it does
not depend on the full parameter sets P; and P, of the two neurons, but only on their
membrane time constants 7,1 and 7y s.

114



4.4. Shared-Input Correlations of Neuronal Dynamics

The calculation for the HCS COBA case is analogous, essentially requiring the following
replacements:

rev

wi, — wik (K, (4.135)

(4.136)

— (uesr);) and

Tmi —7 <7'eff >z
where (7o), and (ueg); are given by Equations 4.101 and 4.100. The covariance then

reads

(Eqns 4.129, 4.59)
Cov|ui,usg] = .

=[S T Tt (5 — ()
<Teff>1 <Teff>2 . szn <7—eff>1 . Tgszn <Teff>2
<7'eff>1 + <Teff>2 Tlsin + (Teft)1 TQSZH + (Teft) o
(4.137)

syn _syn
% [ Tk Tok

Syn Ssyn
Tk T Tok

and the CC is given by

Erev _ Erev — syn __syn
sy = 7 (v, wr, ( 1 <ueff>1)7w27( 2 <ueff>2)77-1 y To ,P12) : (4.138)

2
H \/7T (V7 wy, (Eirev - <u’eff>i> y Wi, (Eirev - <'U/eff>7;) 7Tisyn, ’lpl)
=1

where EI°V denotes the reversal potential vector of the ith neuron (corresponding to the
weight vector w;), (Ues), is an n-dimensional vector with all components equal to (uef),,
and all other notations are as defined above.

In their most general form, the CC Equations 4.131 and 4.138 are somewhat unwieldy.
To gain a better intuition, we can assume several simplifications. First of all, we can
assume the two neurons to share several parameters, in particular 7, (in the CUBA case)
and (7eg) and (ueg) in the COBA case. Furthermore, we can assume them to have the
same synaptic time constant and reversal potential vectors (79" and E™), which can
be viewed as a direct consequence of Dale’s law. Under these assumptions, a lengthy but
straightforward calculation shows that all the factors that depend on the abovementioned
parameters in Equations 4.131 and 4.138 cancel out, leaving us with a single equation for
the CC that holds for both the CUBA and the COBA case:

7 (v, wi, wa)

4.139
VT (v, wi, w) /T (v, wa, wy) ( )

Puiuz =

This equation paints a more intuitive picture. The numerator represents the fact that
the input channels that contribute most to the CC are those which have a large common
impact on both neurons, i.e., a high firing rate v and strong projections wy; and wag
towards both neurons. The denominator is simply a reduced version of the standard devi-
ation of the two membrane potentials (compare with, e.g., Equation 4.98). As mentioned
above, the m,-, 7" and Cp-dependent terms cancel out with their equivalents in the
numerator, leaving only a dependence on v and w.
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4.4.3. Subthreshold Shared-Input Correlations: Theory vs. Simulation

For the beginning, let us narrow down the problem even further. By assuming that some of
the inputs are only connected to only one of the two neurons (w;; = 0), we can subdivide
the total set of inputs into two sets of “private” ones

Pl = {k|w1k 7é 0)w2/€ = 0} ’ |P1| =p , (4140)
Py = {klwag # 0,w1y =0} , [P]=p (4.141)

and a set of “shared” ones
S =A{klwi # 0,wor, #0} , |S|=s . (4.142)

Here, we have required the respective number of presynaptic inputs (and therefore the
respective number of private inputs) to be equal for the two neurons. Furthermore, we
set all input rates and all nonzero weights as equal, such that the CC should now only
depend on s and p. Indeed, a simple calculation yields

S
Purn == (4.143)

This result again confirms the usefulness of the CC as a correlation measure. Ideally, we
require a measure that is invariant to identical transformations of the two RVs (membrane
potentials) in question, such as modifications of the synaptic kernel (by changing, e.g. 7y,
or 7Y") modifications of the total stimulus strength (by changing, e.g., w or nu) or
any other parameter changes. Indeed, under these simplified conditions, the CC of two
neurons is given only by the ratio of shared inputs to the total number of inputs.

This intuitive result is depicted in Figure 4.9. The predicted simplified CC (Equation
4.143) is compared to results from simulations where the stimulus frequency and strength
are varied. Apart from expected variations in the CC extracted from the simulations (due
to their limited duration), the simulations confirm our previous assertion that, when the
two neurons share a common parameter set, the CC only depends on the ratio of shared
to total inputs.

An interesting observation is that the fluctuations due to insufficient sampling statistics
appear to decrease with an increasing shared-to-total input ratio (if the simulation time
is kept constant). This phenomenon is easily understood when taking into account the
volume (in our case, area) of the sampled configuration space. If we assume some low
value p — 0, we can guarantee that all samples are almost surely within the iso-probability
locus of p, which also has a finite area A, since it is a closed curve. The area of an ellipse
written in canonical form

ax?® +bry +cy® =1 (4.144)
is given by
2w

From the iso-probability locus Equation 4.119, we can therefore easily derive

A=—27/1— p2In (2;30102\/1 - p2> . (4.146)
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Figure 4.9.: Membrane potential CC of two identical neurons for different neuron models

and parameters: theoretical prediction vs. simulation results. Top row:
CUBA neurons. The CC is calculated and simulated for different values of
the shared input ratio s/(s + p), input rate v and input weight w. The
dependence on s/(s + p) is linear, whereas the other two variables do not
affect the CC. Bottom row: COBA neurons. The CC is not sensitive to
the change from CUBA to COBA, as can be seen by the horizontal planes
not changing their position. Apart from slight deviations due to insufficient
statistics (too short simulation time), the theoretical prediction is confirmed
by the simulation results. Figure taken from Bytschok (2011).
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Figure 4.10.: Two neurons driven by 100 independent Poisson sources in the subthreshold
regime that share an increasing number of inputs: theoretical prediction vs.
simulation results. Top: membrane potential joint distributions. The col-
ormap represents the height of the simulated joint density function f(uy,us)
(red is high, blue is low). The CC and iso-probability loci are calculated
from Equations 4.143 and 4.119. As the number of shared inputs increases,
the CC increases as well and the iso-probability ellipses become narrower.
Bottom: linear increase of the correlation coefficient with the increasing
number of shared channels, as predicted by Equation 4.143. The theoretical
predictions are in very good agreement with the simulation data. Figure
taken from Bytschok (2011).
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The only variable that appears in this equation and also changes its value in our simula-
tions is the CC p. From a straightforward application of 'Hépital’s rule, we find that

limA=0 . (4.147)
p—1
Since the sampled configuration space volume decreases, but the total number of samples
remains constant due to the fixed simulation duration, the sample density increases,
leading to a more precise sample-based estimate of p as it approaches 1.

With the CC from Equation 4.143 and p and o from Section 4.3.4, we can now predict
the full membrane potential joint distribution for two Poisson-driven neurons with iden-
tical parameters (for the general case we would need to use Equations 4.131 or 4.138).
The comparison to simulation results is shown in Figure 4.10. As the number of shared
sources increases, the two membrane potentials become more correlated, as indicated by
the narrowing-down of their joint distribution and by their increasing CC. The predicted
CC is in very good agreement with the simulation data. This allows us to calculate the
iso-probability loci (Equation 4.119) for the various simulated scenarios, which are, as
expected, confirmed by the simulations. Figure 4.10 also offers a nice visual confirmation
of the sample density argument given above.

4.4.4. The Symmetric Uncertainty as a Spike-Based Correlation Measure

We can now take our investigation one step further and construct a framework that allows
us to predict spike-based correlations. In principle, this should turn out even more useful
than the prediction of the free membrane potential correlations, since it is the spikes that
mediate the information exchange between neurons.

The first problem we encounter is a rather trivial one and it concerns the mathematical
description of a spike train. Until now, we have treated spike trains as point processes,
i.e., defined as a sequence (t; < ... < t,) of points in time, or, alternatively, a sum of
delta functions (Equation 2.29). In order to be able to apply typical correlation measures,
it would be useful to first transform spike trains to finite functions of time that are almost
everywhere® continuous. The simplest way to do this is by convolution with a box (a.k.a.
boxcar) function of duration 7oy:

5(t) : = p(t) * box (|0, Ton, 1)
= [ dr Z O(1 — ts)box(t — 7|0, Ton, 1) (4.148)

S spikes s

where we use the following definition of the box function:

a ifte (tl,tg] ,

(4.149)
0 otherwise ,

box(t|t1,t2,a) :=a-[O(t —t1) — O(t — t2)] = {

8 A property holds “almost everywhere” if, the set for which the property does not hold has measure
zero. In other words, the set for which the property holds takes up almost the entire configuration
space. Its analog in probability theory is “almost surely” (see, e.g., the statement of the CLT from
Section 4.3.2).
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Figure 4.11.: Left: Transformation of a spike train to a binary RV by convolution with a
box function. Here, the box function is defined as box(t| — Ton/2, Ton/2, 1),
making the 1-states centered around the spikes. We shall see later that
aligning the left flank of the box function with the spikes (box(¢]0, 7on, 1)) as
defined in Equation 4.150 is more meaningful, so this remains an illustrative
example for the general case. Right: 1/0-states of a neuron pair with shared
inputs. The red and blue lines represent s;(¢) and sa(t), respectively, while
the green lines represent the output spikes of the two neurons. Figures taken

from Bytschok (2011).

with O(+) representing the Heaviside step function. This transformation effectively repre-
sents a spike count during the time interval (¢t — 7oy,,t]. We shall go one step further and
not differentiate between states with different numbers of preceding spikes:

1 if 3t, € (t — Ton,t] ,

0 otherwise ,

s(t) = sgn[s(t)] = { (4.150)

By virtue of the above definition, a neuron is said to be in the “1”-state for a duration 7oy
following a spike and in the “0”-state otherwise (here, we use quotation marks to emphasize
that the numerical values we associate with the two states are arbitrary; from here on, we
drop them for readability). In other words, s(t) encodes whether the neuron has spiked
or not during the time interval (¢ — 7op, t]. For now, 7oy is arbitrary, but we shall explore a
deep connection to the representation of discrete probability spaces in Chapter 6. Figure
4.11 shows an exemplary transformation of a spike train with the method described above.

With the above transformation, we have effectively represented a spike train p(t) as a
binary RV S = s(t). A pair of neurons can therefore be in one of four possible joint states
at any point in time:

Q(S1,S) = {(0,0), (0,1), (1,0), (1, 1)} (4.151)

where we use the notation (-) to represent a tuple (not an interval). In order to improve
readability, we further define the following shorthands:

(4.152)
(4.153)

n

D (S, =) and

z =D
pzy::p(sl :ZE,SQZQ) 5
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with which we can denote the probabilities of either neuron to be in the “1”-state by 'py
and 2p;, and those of the four possible joint states by poo, po1, pio and pi1, respectively.
In this notation, the expression for the spike-train CC turns out to be quite simple:

Cov|[S1, Ss]
\/Var[S;] - Var[S]
_ E[S1, 53] — E[S1]E[S)]
V(EI83] - E2(81]) (B[S3] - E2[S5))
> plsis2)sisa— >0 p(si)st X pls2)se

(s1,82)€Q s1€4{0,1} s2€4{0,1}

p51752 -

|

n

2
E p(sn)s%_< Z p(sn)5n>

1| sne{0,1} $n€{0,1}
_ P —'pi’pm (4.154)

V(i =100) (o1 = 22)

While the CC is an often-used spike train correlation measure?, the way in which we are
now effectively treating the spike output of a neuron as a binary RV might call for a more
information-theoretical approach.

The amount of information in a message is routinely quantified by its entropy. The
temporal evolution of a binary RV effectively spells out such a message, with an entropy

defined by

H(S)=— > p(s)logyp(s) . (4.155)
s€{0,1}
This is a particularly useful quantity, since it associates a neuron that “permanently does
the same thing”, i.e., p(S = 0) — 1 (never spiking) or p(S = 1) — 1 (always spiking),
with a vanishing information content, as can be easily verified by I’Hospital’s rule:

p(S=z)—1
H(S) ——————0 . (4.156)

For two correlated RVs, we can define a so-called conditional entropy, which quantifies the
amount of information we can gain by measuring one of the RVs in addition to what we
already know by having measured the other:

H(S1|9) = > plso)H(S1|s2)
s2€{0,1}
=— Y pls2)p(si]s2) logy p(si|s2)

(s1,82)€Q

51,8
-— > p(81,82)10g2p((18)2) : (4.157)
(s1,52)€Q pis2

9 Albeit not necessarily in the same way as we do here. More often than using a box function, spike trains
are convolved with exponential or Gaussian functions. Yet another popular method of processing a
spike train is by binning, thereby effectively discretizing time and treating the output of a neuron as
a firing rate.
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The conditional entropy is sometimes also called noise entropy, especially in cases where
S1 represents a noisy version of So, so the remaining entropy of Sy after having measured
So is the entropy of the noise. This already brings us closer to our goal of defining an
entropy-based correlation measure, but the conditional entropy still has the drawback of
being asymmetric (due to the denominator in the log, depending only on s3).

As we have already mentioned (Equation 4.8) the joint product of a set of RVs factorizes
if and only if they are pairwise independent. In particular, for two RVs,

s1Lsy = p(si1,s2) =p(s1)p(s2) . (4.158)

We can therefore characterize the mutual dependence of two RVs by comparing their
joint distribution p(Si, S2) with the product of their marginals p(S1)p(S2). A standard
measure for such a comparison is provided by the Kullback-Leibler (KL) divergence, which
is defined as follows for an ordered'? pair (p,q) of probability distributions over the same
discrete!! space :
_ p(z)
Dxr(pllg) =) pla)log == . (4.160)
= q(x)
The base of the logarithm is usually chosen depending on the nature of the RVs or on the
preferred unit of information (bits, nats, etc.) — so in our case, log, is a natural choice.
We can now calculate the KL divergence of the joint probability distribution p(S7,S2)
from the product of marginals p(S1)p(S2):

Dict. (0(S1,52) || p(S)P(S2)) = D plsa, s2) log (p<l>>

(51,52)€92 p(Sl)

= Y plsi,s2)logep(silss) = Y p(si,s2)logyp(s1)

(s51,82)€Q (s1,82)€Q
51,8
= 3 p(st, ) log p<<)> = ST p(s1) - logyp(s)
(Sl,sz)GQ pis2 316{0,1}
Eq. 4.157 Eq.XlSﬁ
= H(Sl) —H(SﬂSg) = I(Sl,SQ> 5 (4161)

which is the definition of the frequently used so-called mutual information (MI) I(S1, S2).
The MI has the very useful property of being a metric, therefore being, in particular,
symmetric with respect to S7 and S5.

The remaining concern with using the MI as a correlation measure is the fact that it
is unnormalized, therefore depending on, e.g., the input rates and weights of a pair of
neurons with a fixed configuration of shared and private input channels. This problem
can be easily solved by normalizing the MI to the entropies of both RVs, in order to keep
it symmetric. Here, we use the so-called symmetric uncertainty (SU) as defined in Witten
and Frank (2005):

= 21(S1, S2)
1(S1,8) = 4.162
(51:52) = (g 1 71(5y) (4.162)
10 The Kullback-Leibler divergence is not symmetric, i.e, in general,
Dxv(pllq) # Dxu(qllp) - (4.159)

11 For a continuous €2, the sum is replaced by an integral.
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1.0

SU = 0.273
p(s* =ON) = 0.386
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Figure 4.12.: CC vs. SU. Top left: Example spike trains (green) from two neurons with
5 shared and 2 private inputs and their state variables (red and blue). The
positive CC and SU reflect the ratio of shared to total inputs, but the SU
is lower since it is a convex function of s/(s + p). The other three subplots
depict various correlation measures over a large subspace of Q: pgy € [0, 1]
and po1 = p1p € [0,0.5]]. Figure taken from Bytschok (2011). Top right:
CC. Bottom left: Squared CC. Bottom right: SU. Note the qualitative
similarity between the squared CC and the SU.
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In addition to being symmetric, it can be shown that the SU is normalized to the unit
interval:

I(S1,8,) €[0,1] . (4.163)

Figure 4.12 shows an example of binarized neuron spike trains and their calculated SU.
In contrast to the CC, which increases linearly with the ratio of private to total inputs
(Equation 4.143), the SU is clearly a concave function of this ratio, with a value of 0.273
for s/(s+p) = 5/7 — as compared to the independent case I(s/(s + p) = 0) = 0 and the
fully correlated case I(s/(s+p) = 1) = 1. Since calculating the SU requires the knowledge
of the same probabilities 'p1, %p1, poo, Po1, P10 and pi1 as the CC, we will restrict ourselves
to only predicting the former, knowing that we could predict the latter as well.

In particular, we observe an interesting connection between the SU and the CC. Figure
4.12 depicts a sweep over a subspace of the entire spectrum of probability distributions
over ) (pio and po; are kept equal in order to allow a plot over only two degrees of
freedom). Indeed, it turns out that the SU looks very similar to the square of the CC
over the entire spectrum of probability distributions over 2. However, we need to stress
that this is not due to a deep mathematical relationship between the SU and the CC,
but rather a direct consequence of the conditions imposed on our correlation measure:
symmetry with respect to S; and Sy, normalization to [0, 1] and extreme values for zero
(I = p? =0) and total (I = p? = 1) (anti)correlation.?

Before we move on, we should point out that the denomination of “symmetric un-
certainty” is a quite unfortunate one. Intuitively, a high uncertainty should point to
independence, since for two independent RVs, measuring one leaves us uncertain about
the state of the other. For the SU, the exact opposite is the case. Nevertheless, we shall
continue using this (declaredly confusing) denomination for historical reasons (Bytschok,
2011; Witten and Frank, 2005).

4.4.5. Spike-Based Correlations from Free Membrane Potential Statistics

We have previously defined the free membrane potential of a neuron under certain stimulus
conditions to represent the would-be value of the membrane potential if the threshold was
set to infinity. When comparing the time course of the membrane potential with the one
of the free membrane potential (Figure 4.13), we can immediately identify a connection
of the latter to the state variable of the neuron: the states S = 1 appears to coincide with
the periods when the effective membrane potential % is suprathreshold:

St)=1l<=a>9 . (4.164)

If this is, indeed, the case, then any calculations involving state variables could be per-
formed using free membrane potentials, the (joint) distributions of which we are able to
fully specify in closed form (Section 4.4.2). More precisely, the joint and marginal state

12 Herein lies the main difference between the CC and the SU. The former is a measure of correlation,
which discerns between positive (p > 0) and negative (p < 0) correlation, whereas the latter is a
measure of dependence (mutual information). As usual, correlation implies dependence (p € {—1,1} =
I =1). Conversely, independence implies zero correlation (I =0 = p = 0).
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distributions are then given by

f(@ i o) (4.165)
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where f represents a Gaussian PDF (the arguments show whether it is univariate or
bivariate). We have previously derived closed-form solutions for the mean p (mean vector
p) and variance o2 (covariance matrix X) for different neuron models in Sections 4.3.4
and 4.4.2. It can be easily verified that Z(zy)eQ Dy = 1. In order for the above equations
to be useful, we need to ensure that the u-based prediction of the above probabilities is
in accordance to the probabilities calculated from the spike trains via Equation 4.150. In
particular, we need to determine numerical values for two free variables: the onset of the
1-state associated with a spike and its duration 7.

In our definition of the 1-state (Equation 4.150), we have assumed the switch from S = 0
to S = 1 to occur synchronously to the moment of spiking. In light of the connection
between S(t) and 4(T"), we can now motivate this properly, since we want the 1-state to
coincide with a suprathreshold free membrane potential — and it is the threshold crossing
of the latter that triggers a spike (Figure 4.14).

The length 7, of the box function which determines the 1-state duration for a single
spike is a little more difficult to find. Intuitively, it should be in the order of the longest
time constant that governs the evolution of the membrane potential (i.e., the falling
flank of a PSP), since this time constant then also determines the time that the free
membrane potential spends above the threshold following a spike. However, the free
membrane potential can be suprathreshold for extended periods, during which the neuron
would spike with a high rate (burst). A fixed 7o, should therefore remain valid for both
single spike events as well as bursts of arbitrary length. For now, we shall determine
Ton €xperimentally, but we will provide a more thorough (analytical) approach to the
calculation of burst lengths in Section 6.5.3.

The most elementary requirement is that, for a single neuron, the occurrence probability
p1 of the 1-state should be the same when calculated from both the free membrane poten-
tial (with the condition @ > ¥) and the spike train (by convolution with box(¢|0, 7on, 1)).
While the former is fixed, we can study the latter for various input scenarios by sweeping
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Figure 4.13.: Free membrane potential @ (dashed curve) vs. “true” membrane potential
u (solid curve). Spiking (which corresponds to S = 1 in the state picture)
coincides with a suprathreshold free membrane potential @ > 4. Figure
taken from Bytschok (2011).
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Figure 4.14.: A threshold crossing of the free membrane potential @ triggering a single
output spike. The 1-state defined by the suprathreshold period of # is de-
picted in blue. The same state resulting from the convolution of the output
spike (train) with a box function shown in green. Left: Box function is
centered around the spike, i.e., box = box(t| — Ton/2, Ton/2,1). Right: The
left flank of the box function coincides with the timing of the spike, i.e.,
box = box(t|0, Ton, 1). Naturally, the best overlap is achieved for latter case.
Figure taken from Bytschok (2011).
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(Eq. 4.165) __(Eq. 4.150)
Figure 4.15.: Relative error Ap; = = G b ) calculated from the free mem-
P

brane potential distribution (]1)(11 > 49), Equation 4.165) as compared to the
p1 obtained from convolving the output spike train with a box function of
duration 7o, (Equation 4.150). The relative error is calculated for various
input weights w and rates nu, as well as for different 7,,. The lowest relative
error is obtained for 7., = 15 ms (top right). The relatively large errors that
can be observed for weak input (bottom left corners of the plots) are due to
non-Gaussian @-distributions. Figure taken from Bytschok (2011).

over the firing rates and synaptic weights of the inputs. Figure 4.15 shows the result
of such a sweep, where only the excitatory weights and rates were changed, in order to
ensure a fast coverage of the entire p; € [0, 1] interval. As it turns out, the difference
(relative error) between the u-based and the spike-based calculation of p; has a minimum
around 7,, = 15ms, which corresponds roughly to the membrane time constant. The
relative errors only become large for low rates and weights, which is expected: firstly, the
Gaussian approximation of the free membrane potential distribution does not hold for
low-rate stimuli; secondly, when stimulation is weak, spike events are rare and the finite
simulation times come into play.

We can now test our chosen value of 7,, = 15ms by predicting the joint states ps,
with Equations 4.166-4.169 and comparing the results to the ones obtained from simula-
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4. Dynamics and Statistics of Poisson-Driven LIF Neurons

tions (spike trains convolved with box(¢|0, 7on, 1)). We repeat our sweeps over the input
parameters w and v from before. The 00- and 11-state distributions are compared in
Figure 4.16. The distributions of the “mixed” 01- and 10-states are compared in Figure
4.17 (since the total input rates and weights received by the two neurons are identical,
Po1 = P10, so only one of them is shown).

The pgo- and py1-surfaces in the w-v parameter space behave, qualitatively, as expected.
Since spiking intensifies for increasing input rates and weights, p1; increases monotonically
with w and v. Conversely, pgo is monotonically decreasing with w and v. The box function
duration 7., does not affect this qualitative relationship, but rather acts as a multiplier for
p11 and 1 — pgg. The same monotonicity in w and v is expected from the suprathreshold
(subthreshold) probability mass of the free membrane potential distribution (see Section
4.3.4).

The iso-probability loci for the pgo- and pii-surfaces are represented by “pixels” with
identical color. If our assumption about the equivalence between suprathreshold-u-states
and spike-train-derived 1-states is correct, then an unchanged subthreshold (suprathresh-
old) probability mass of the free membrane potential distribution should leave all p,,
unchanged as well. The subthreshold probability mass is given by the CDF of the Gaus-
sian u-distribution at the threshold:

F(0) = % [1 +erf <19\/_§:>]

In Section 4.3.4 we have shown that, for both CUBA and COBA neurons in a low-
conductance state, the mean u of the free membrane potential scales with wv and its
variance o2 with w?v. This implies that (1)) does not change for

(4.170)

U—p

= const

- (4.171)

which gives us the iso-probability loci up to some multiplicative constants o and j3:

B s
av+ BV

Indeed, we can observe that the iso-probability loci for both pgg and p11 are approximately
hyperbolic. For the particular value of 7o, = 15 ms, we can see that for the entire investi-
gated w-v parameter space, the values predicted from the t@-distribution are in excellent
agreement with the one obtained from the simulated spike trains (see Figure 4.16).

The po1- and pyg-surfaces paint a similar picture. Their qualitative dependence on the
input weights and rates again corresponds to our intuitive expectations. For very weak and
very strong background stimulation, the 00- and 11-states are, respectively, predominant,
leaving the 01- and 10-states with only small probabilities. For intermediate w and v
values, pg1 and pig reach a maximum.

Their non-monotonic dependence on 7y, is slightly less straightforward, but still intu-
itive. Consider the case of high w and v, where the neurons both spike almost continu-
ously: by decreasing 7y, the relative occurrence of 1-states is reduced, thereby implicitly
reducing the occurrence of 11-states. The missing probability mass is then distributed
among the other three joint states, thereby increasing pg; and pig as well. The converse
argument applies for the weak-input region of the w-v space.

(4.172)
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Figure 4.16.: 00- and 11-state distributions across a range of different input rates and
weights. Top: p11 and pgo surfaces obtained from simulated spike trains
for 7on € {10,15,20,25} ms. The exact value of 7o, does not change the
qualitative aspect of the p,,-surfaces. As expected, higher 75, values lead
to a higher py1, while lower 7o, values increase pog. Middle: pi; and pgg
color plots obtained from simulated spike trains for 7o, = 15ms. The iso-
probability loci (areas of same color) are of approximately hyperbolic shape,
as predicted by the theoretical calculation based on the free membrane po-
tential. Bottom: Theoretical prediction of p;; and pgy from Equations
4.166 and 4.169. With the previously found value of 7o, = 15ms, we can
observe a very good agreement between the p(,,) calculated from the spike
trains obtained from simulations and the theoretical prediction from the
@ > ¥-condition. Figure taken from Bytschok (2011).
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Figure 4.17.: 10-state distribution across a range of different input rates and weights.
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The 01-state behaves identically due to the symmetry of the experimental
setup (the two neurons have identical stimulation parameters). Top left:
pi1o surfaces obtained from simulated spike trains for 7o, € {10, 15,20, 25}
ms. As before, the exact value of 7., does not change the qualitative as-
pect of the p(,,-surfaces. However, in contrast to pop and pi1, Ton scales
the “mixed” state probabilities pg; and pig non-monotonically. Top right:
Theoretical prediction of pig from Equation 4.168. Due to the same invari-
ant suprathreshold probability mass considerations as for pgg and pi1, the
iso-probability loci (areas of same color) are of approximately hyperbolic
shape. Bottom: pig color plots obtained from simulated spike trains for
Ton = 15 ms and 7o, = 25ms. For the previously found value of 7y, = 15 ms,
the agreement between the p(,,) calculated from the spike trains obtained
from simulations and the theoretical prediction from the @ > 1J-condition is
very good — and visibly better than for 7., = 25 ms.



4.4. Shared-Input Correlations of Neuronal Dynamics

The iso-probability-locus argument derived from the invariant free membrane potential
distribution applies for the “mixed” states as well. As expected, we find the same hyper-
bolic iso-probability loci for the pg1- and pig-surfaces as we did before for the pyo- and
pii-surfaces. The agreement between theory and simulations is, again, very good (see
Figure 4.17)

4.4.6. Spike-Based Correlations: Theory vs. Experiment

The good predictions we were able to obtain for the marginal and joint probabilities
ip, and Py DOw enable us to predict the SU as well. In particular, we expect similarly
good results as we have presented in the previous section, since the calculation of the SU
only requires the abovementioned probabilities. Here, we only show results for COBA
neurons, but the conclusions hold for CUBA neurons as well.

We start by predicting the behavior of the SU for various values of the input rates
and weights, as well as for several shared-to-total input channel ratios (Figure 4.18). As
expected, for any configuration of input rates and weights, the SU increases with the
proportion of shared channels. The increase is also not linear, as the p,,-dependence of
the SU (Figure 4.12) already suggests. The dependence on the input rates and weights,
however, is more complex and not as intuitive. In particular, we note that the input
firing rates have a significantly stronger impact than the input synaptic weights. These
theoretically predicted dependencies represent interesting findings, if validated by exper-
iments/simulations.

This has been done, and the comparison is depicted in Figure 4.19. We note that the
overlap of the state variable S(t¢) calculated from the free membrane potential time course
compared to the one obtained from the output spike train is, in general, quite good, with
several small exceptions due to the relatively large effective time constant, which causes
slight disparities between the free and the “true” membrane potential. The theoretical
prediction of the SU (denoted SUxr)'? fits almost perfectly with the SU calculated from
the state variables derived from the simulated suprathreshold free membrane potential
(denoted SUjpaq)'*. The SU values derived from the spike train (denoted SUsy,) deviate
only slightly and within the error margins imposed by the finite simulation time. The
good agreement between the theoretical prediction and the simulation data appears to
hold for a wide range of input weights/rates configurations.

We need to mention that we suspect the deviations between theory and experiment to
be, to some extent, systematic. The reason lies mainly in the abovementioned difference
between the free and “true” membrane potential, which causes additional short 1-states
that are not reflected in the spike trains. These become less pronounced for faster
membranes and can also be tackled by refined theoretical methods, which are the subject
of ongoing investigations.

Regimes also exist where the disparity between theory and simulations is larger, as can

13 The notation represents a reference to the Gaussian approximation for the free membrane potential
PDF.

14 We have kept this notation for historical reasons. FEarlier versions of our theory used a modified
synaptic conductance trace instead of the free membrane potential, for which we used the term “load
function”.

131

150-
probability

loci of po1
and pio

w-v-§-
dependence

of the SU



4. Dynamics and Statistics of Poisson-Driven LIF Neurons

0 10 20 45 65 80

101 100 100 100 100 100
Shared

channels

0.30

0.24 ¢

0.18¢

SU Th. gauss

0.127

SU,;, gauss

0.06 |

0.00, 20 40 60 80

Shared channels

Figure 4.18.: Theoretical prediction of the SU for various input parameter configurations.
Left: Sweep over the excitatory input rates and weights. The inhibitory
ones were kept constant at v,y = 50 Hz and w;,, = 35nS. As expected, the
SU increases with the ratio of shared to total inputs. The dependence of
the SU on the input firing rates and weights is complex and not acessible by
straightforward intuition. We note, however, that shape of the different SU
surfaces for various shared-to-total ratios remains qualitatively similar and
differs only in amplitude. Right: SU(s) for a total number of s + p = 100
input channels with parameters vy, = 50Hz, w;,, = 35nS, vexe = 90 Hz
and weye = 30nS. Figure taken from Bytschok (2011).

violation of  be seen in Figure 4.20. This happens, however, only for low input rates, which is easily

Gaussian understood when considering that in this regime, the CLT which we have invoked for
approxima- motivating the Gaussian distribution of the membrane potential (see Section 4.3.2) no
tion at low longer holds. However, the agreement between the SU calculated from the free membrane
v potential and the one obtained from the output spike trains (both simulated) validate our

assumption that the two are practically equivalent generators of the state variables S;(t).
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Figure 4.19.: State variables and their SU: theory vs. simulations. Top left: Membrane
potential of a neuron under Poisson bombardment. We use two ways to
calculate the temporal evolution of the state variable S(t). Firstly, we can
translate the time spent by free membrane potential in the suprathreshold
regime directly to S(¢) = 1 (red traces), which is also used in the theoretical
prediction of the SU. Secondly, we can use the “true” membrane potential,
i.e., the spike trains it generates, to calculate the state variables (blue traces)
by convolution with a box function (Equations 4.148 and 4.148). We note
that the two methods yield very similar results, with only few exceptions
that can be traced back to the relatively large effective time constant of the
membrane. Top right: SU(s) for a total number of s + p = 100 input
channels with parameters v, = 170 Hz, w;,, = 20n0S, vexe = 90 Hz and
Wege = 30nS. The theoretical prediction of the SU (denoted SUy) is rep-
resented by the red curve. The SU calculated from the suprathreshold free
membrane potential trace (denoted SUaq) is represented by red dots. As
expected from the successful prediction of free membrane potential distribu-
tions (Section 4.4.3), the agreement between these two datasets is very good
as well. The SU calculated from the output spike trains (denoted SUsim) is
represented by green dots. Error bars represent the standard deviation over
multiple trials (the red error bars are smaller than the symbols). The analyt-
ical prediction fits the simulation data well within the measured errors. The
remaining differences are, indeed, systematic, and can be traced back to the
relatively large effective time constant. Bottom left: Measured values of
the SU from simulated spike trains for various values of the shared-to-total
input ratio, input firing rate and input synaptic weight. The jitter in the
measured values is due to finite simulation times. Bottom right: Predicted
values of the SU for the same parameter sets as in the simulations. 133
Figure taken from Bytschok (2011).
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Figure 4.20.: The SU at low firing rates: theory vs. simulation. Top: Membrane po-
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tential of a neuron under low-rate Poisson bombardment. We use the same
color coding as in Figure 4.19. We note again the good agreement between
the state variable calculated from the free membrane potential (red) and
the one calculated from the spike trains (blue). Bottom left: SU(s) for a
total number of s + p = 100 input channels with parameters v;,;, = 10 Hz,
Winh = 2010, Vexe = 20Hz and weye = 50nS. As expected from the good
agreement in the state variable calculation (see above), SUjpaq and SUgim
have almost exactly the same values. The predicted SUys, however, lies sys-
tematically below the simulated values. The reason for this discrepancy lies
in the low input rates, for which the Gaussian approximation (and therefore
also SUr) no longer holds. Bottom right: Validity of the Gaussian approx-
imation for various sets of input rates and weights. Here, we have plotted
the Euclidean (L?) norm of the difference between the simulated free mem-
brane potential distribution and the Gaussian distribution assumed by the
theory. As expected, the dependence on the input weights is only weak, since
these can be reduced to a linear rescaling of the membrane potential. The
input rates, however, are critical for the CLT argument we have provided in
Section 4.3.2. Figure taken from Bytschok (2011).
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4.5. Conclusions and Outlook

In this chapter, we have discussed the dynamics of both conductance- (COBA) and
current-based (CUBA) LIF neurons with exponential synaptic kernels. We have derived
closed-form expressions for the PSP shapes, which are exact for the CUBA case and good
approximations for the COBA case in the high-conductance state. Building on these, we
were able to derive closed-form expressions for the current, conductance and membrane
potential distributions of LIF neurons and have shown them to accurately match simula-
tion results. We then extended this formalism to study neural response correlations due
to shared Poisson sources. We were able to find good predictions of the free membrane
potential correlation coefficient, as well as for the SU of spike trains produced by pairs of
correlated neurons.

Our results were obtained for one particular synaptic kernel shape which is often used
in computational and theoretical neuroscience. However, the exact same formalism can be
applied to derive expressions for arguably more biological PSC shapes such as a-functions
or differences of exponentials. This becomes particularly interesting for understanding the
behavior of neuromorphic circuits, where the precise PSC shape can be either measured
or inferred from the design specifications and is usually not an exact exponential function
of time. Having a closed-form expression for the PSP shape that explicitly depends on
controllable hardware parameters is of obvious advantage for the calibration procedure.

Here, we have only studied pairwise correlations, but our framework can be extended
to higher-order correlations as well. In particular, the analytical predictions we were able
to derive here will be useful for understanding and quantifying the effects of shared-input
correlations on the sampling networks we discuss in Chapter 6 and possibly also for finding
appropriate compensation mechanisms. Such mechanisms, derived from the single-neuron
statistics, have already been applied successfully to the functional networks discussed in
Chapter 5.

One particularly interesting outcome was the explanation of the counterintuitive fea-
tures of membrane potential distributions in the high-conductance state, in particular
the inverse proportionality of the distribution width to the input firing rate and its near-
independence of the synaptic input weights. As already mentioned before, this can act as
a homeostatic mechanism in plastic networks and, if shown to be functionally sufficient
for models of unsupervised learning such as the ones proposed in, e.g., Habenschuss et al.
(2012); Nessler et al. (2009, 2013), may save significant amounts of hardware and soft-
ware resources that are used for additional homeostatic mechanisms, as proposed in, e.g.,
Breitwieser (2015).

Our prediction of spike train correlations rely on the assumption that a suprathreshold
free membrane potential is, on average, approximately equivalent to an S(t) = 1 state
(Equation 4.164) for a particular choice of the 1-state kernel duration 7,,. We have deter-
mined this duration experimentally for a particular choice of parameters and have shown
our initial assumption to represent a good approximation. However, as we exemplify in
Figure 4.20, the initial assumption is not true for arbitrary parameter sets. In Chapter 6,
we analyze the statistics of single neuron membranes from a different perspective (prop-
agation of membrane autocorrelations, short: ACP), in particular with a well-defined
interpretation of 7o, and obtain very accurate results for broad parameter ranges. It
appears likely that the ACP formalism can be applied to ensembles of neurons as well
and we are actively investigating this idea at this time.
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Figure 4.21.: Exemplary results of the graph-based algorithm for local optimization of the
source-to-neuron mapping. The cost function to be minimized is multidi-
mensional and is given by the number of shared sources per neuron pair.
In this example, the total number of network neurons is 192 and the total
number of available sources is 64, out of which 32 are excitatory and 32
are inhibitory. Each neuron must have a presynaptic pool of 4 excitatory
and 4 inhibitory sources. The histograms (colored bars and black numbers)
show the number of neuron pairs that share a particular number of excita-
tory and inhibitory sources (white numbers). Left: Random choice of input
pools. Right: Input pools chosen by the graph-based heuristic algorithm.
The algorithm succeeds in providing all neurons with the required number of
sources while eliminating all pool configurations that have a pairwise overlap
larger than 2. Figure taken from Petrovici and Bill (2009).

When neural receptive fields become sufficiently large, shared-input correlations become
inevitable in finite-size neural substrates. This is particularly relevant for neuromorphic
devices, where internal Poisson generators are expensive in terms of chip area and exter-
nal noise sources must occupy the already limited bandwidth between the neuromorphic
device and the host computer. Under these constraints, it often becomes an important
problem to find a mapping between the pool of noise sources and the neurons in the
functional network that minimizes these correlations. This can be expressed as an op-
timization problem where one searches for a minimally overlapping set of neuron input
pools. In turn, this problem can be shown to be mathematically equivalent to the well-
known maximum independent vertex set problem from graph theory (Petrovici and Bill,
2009). This problem is known to be NP-hard, but we have designed an heuristic algorithm
(see also Halldorsson and Radhakrishnan, 1997, for a related discussion) that is able to ef-
ficiently find good solutions for small-scale networks (see Figure 4.21 for an example with
192 neurons and 64 sources). The subsets found by running the algorithm with varying
starting parameters define multiple sets of shared and private input configurations, which
can then be fed into our SU prediction to find a locally optimal noise input configuration.
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Hardware

As I see it, the only way of overcoming this magical view of
what “I” and consciousness are is to keep on reminding oneself,
unpleasant though it may seem, that the ‘“teethering bulb of
dread and dream” that nestles safely inside one’s own cranium
is a purely physical object made up of completely sterile and
inanimate components, all of which obey exactly the same laws
that govern all the rest of the universe [...[. Only if one keeps
bashing up against this disturbing fact can one slowly begin to
develop a feel for the way out of the mystery of consciousness:
that the key is not the stuff out of which brains are made, but
the patterns that can come to exist inside the stuff of a brain.

Douglas Hofstadter, Gédel, Escher, Bach, 1999

Along with the many advantages it offers, the neuromorphic approach also comes with
limitations of its own. These have various causes that lie both in the hardware itself
and the control software. We will later identify these causes, which we henceforth refer
to as distortion mechanisms. The neural network emulated by the hardware device can
therefore differ significantly from the original model, be it in terms of pulse transmission,
connectivity between populations or individual neuron or synapse parameters. We refer to
all the changes in network dynamics (i.e., deviations from the original behavior defined by
software simulations) caused by hardware-specific effects as hardware-induced distortions.

Due to the complexity of state-of-the-art neuromorphic platforms and their control
software, as well as the vast landscape of emulable neural network models, a thorough and
systematic approach is essential for providing reliable information about causal mecha-
nisms and functional effects of hardware-induced distortions in model dynamics and for
ultimately designing effective compensation methods. In this chapter, we discuss this
systematic analysis and compensation techniques for several hardware-specific distortion
mechanisms.

First and foremost, we identify and quantify the most important sources of model
distortions. We then proceed to investigate their effect on network functionality. In
order to cover a wide range of possible network dynamics, we have chosen three very
different cortical network models to serve as benchmarks. In particular, these models
implement several prototypical cortical paradigms of computation, relying on winner-take-
all structures (attractor networks, Section 5.3), precise spike timing correlations (synfire
chains, Section 5.4) or balanced activity (self-sustained asynchronous irregular states,
Section 5.5).
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For every emulated model, we define a set of functionality criteria, based on specific as-
pects of the network dynamics. This set should be complex enough to capture the charac-
teristic network behavior, from a microscopic (e.g., membrane potentials) to a mesoscopic
level (e.g., firing rates) and, where suitable, computational performance at a specific task.
Most importantly, these criteria need to be precisely quantified, in order to facilitate an
accurate comparison between software simulations and hardware emulations or between
different simulation/emulation back-ends in general. The chosen functionality criteria
should also be measured, if applicable, for various relevant realizations (i.e., for different
network sizes, numbers of functional units etc.) of the considered network.

Because multiple distortion mechanisms occur simultaneously in hardware emulations,
it is often difficult, if not impossible, to understand the relationship between the observed
effects (i.e., modifications in the network dynamics) and their potential underlying causes.
Therefore, we investigate the effects of individual distortion mechanisms by implementing
them, separately, in software simulations. As before, we perform these analyses over a
wide range of network realizations, since - as we will show later - these may strongly
influence the effects of the examined mechanisms.

After having established the relationship between structural distortions caused by
hardware-specific factors and their consequences for network dynamics, we demonstrate
various compensation techniques in order to restore the original network behavior.

In the final stage, for each of the studied models, we simulate an implementation
on the hardware back-end by running an appropriately configured executable system
specification (see Section 3.3.4), which includes the full panoply of hardware-specific
distortion mechanisms. Using the proposed compensation techniques, we then attempt
to deal with all these effects simultaneously. The results from these experiments are then
compared to results from software simulations, thus allowing a comprehensive assertion
of the effectivity of our proposed compensation techniques, as well as of the capabilities
and limitations of the neuromorphic emulation device.

Owing to the detailed understanding of hardware-induced distortive effects on the
model functionality, we were able to scale down two of the studied models (the L.2/3 and
synfire chain models) to a size that is amenable to emulation on the Spikey chip. While
some particular functional properties can only be properly observed in the large-scale
versions of these networks, it was possible to reproduce many fundamental characteristics
in the small-scale models as well. The Spikey emulations of the L2/3 and synfire chain
models are described in Sections 5.3.9 and 5.4.10, respectively.

This work is the result of a close collaboration with Paul Miiller, Bernhard Vogginger,
Oliver Breitwieser, Mikael Lundqvist and Lyle Muller. The material for all waferscale-
related Sections in Chapter 5 is taken from Petrovici et al. (2014), whereas the material
for the Spikey emulations is taken from Pfeil et al. (2013). Both of these publications
have been coauthored by the author of this thesis. Some related results have also been
described in Breitwieser (2011); Briiderle et al. (2011); Miiller (2011); Vogginger (2010).
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5.1. Investigated Distortion Mechanisms

Reviewing the hardware and software components of the BrainScaleS wafer-scale sys-
tem (Section 3.3) leaves us with a number of mechanisms that can negatively affect the
emulation of neural network models:

e neuron and synapse models are cast into silicon and can not be altered after chip
production

e limited ranges for neuron and synapse parameters

e discretized and shared parameters

e limited number of neurons and synapses

e restricted connectivity

e synapse loss due to non-optimal algorithms for NP-hard mapping

e parameter variations due to transistor level mismatch and limited re-write precision
e non-configurable pulse delays and jitter

e limited bandwidth for stimulation and recording of spikes

It is clear that, for all of the above distortion mechanisms, it is possible to find a corner
case where network dynamics are influenced strongly. However, a few of these effects stand
out: on one hand, they are of such fundamental nature to mixed-signal VLSI that they
are likely to play some role in any similar neuromorphic device; on the other hand, they
are expected to influence any kind of emulated network to some extent. We have therefore
directed our focus towards these particular effects, which we summarize in the following.
In order to allow general assessments, we investigate various magnitudes of these effects,
also beyond the values we expect for our particular hardware implementation.

Neuron and Synapse Models

While some network architectures employ relatively simple neuron and synapse models
for analytical and/or numerical tractability, others rely on more complex components in
order to remain more faithful to their biological archetypes. Such models may not allow a
straightforward translation to those available on the hardware, requiring a certain amount
of fitting. In our particular case, we search for parameters to Equations 3.3 — 3.10 that
best reproduce low-level dynamics (e.g. membrane potential traces for simple stimulus
patterns) and then tweak these as to optimally reproduce high-level network behaviors.
Additionally, further constraints are imposed by the parameter ranges permitted by the
hardware (Table 3.3).

Synapse Loss

Above a certain network size or density, the mapping process may not be able to find
enough hardware resources to realize every single synapse. We use the term “synapse
loss” to describe this process, which causes a certain portion of synaptic connections to
be lost after mapping. In a first stage, we model synapse loss as homogeneous, i.e., each

139

distortion
mechanisms



5. Cortical Models on Neuromorphic Hardware

synapse is deleted with a fixed probability between 0 and 50%. To ease the analysis
of distortions, we make an exception for synapses that mediate external input, since, in
principle, they can be prioritized in the mapping process such that the probability of losing
them practically vanishes. Ultimately however, the compensation methods designed for
homogeneous synapse loss are validated against a concrete mapping scenario.

Non-Configurable Axonal Delays

Axonal delays on the wafer are not configurable and depend predominantly on the
processing speed of digital spikes within one HICANN, but also on the physical distance
of the neurons on the wafer. In all simulations, we assume a constant delay of 1.5ms
for all synaptic connections in the network, which represents an average of the expected
delays when running the hardware with a speedup of 10* with respect to real time.

Synaptic Weight Noise

As described in Section 3.3.1, the variation of synaptic weights is assumed to be
the most significant source of parameter variation within the network. This is due to
the coarser discretization (4-bit weight vs. 10 bit used for writing the analog neuron
parameters) as well as the large number of available synapses, which prohibits the storage
of calibration data for each individual synapse. The quality of the calibration only
depends on the available time and number of parameter settings, while the trial-to-trial
variability and the limited setting resolution remains. To restrict the parameter space
of the following investigations (Section 5.2), only the synaptic weights are assumed to
be affected by noise. In both software and ESS simulations, we model this effect by
drawing synaptic weights from a Gaussian centered on the target synaptic weight with
a standard-deviation-to-mean-ratio between 0 and 50 %. Occasionally, this leads to
excitatory synapses becoming inhibitory and vice versa, which can not happen on the
hardware. Such weights are clipped to zero. Note that this effectively leads to an increase
of the mean of the distribution, which however can be neglected, e.g., for 50 % noise the
mean is increased by 0.425%. For ESS simulations we assume a synaptic weight noise
of 20 %, as test measurements on the hardware indicate that the noise level can not be
reduced to below this number.

It has to be noted that the mechanism of distortion plays a role in the applicability
of the compensation mechanisms. The iterative compensation in Section 5.5.7.2 is only
applicable when the dominant distortion mechanism is fixed-pattern noise. The other
compensation methods, which do not rely on any kind of knowledge of the fixed-pattern
distribution, function independently of the distortion mode.
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5.2. Characterization and Compensation of Network-Level
Distortions: a Systematic Workflow

In the following, we analyze the effects of hardware-specific distortion mechanisms on
a set of neuronal network models and propose adequate compensation mechanisms for
restoring the original network dynamics. The aim of these studies is twofold. On one
hand, we propose a generic workflow which can be applied for different neural network
models regardless of the neuromorphic substrate, assuming it possesses a certain degree of
configurability (Figure 5.1). On the other hand, we seek to characterize the universality of
the BrainScaleS neuromorphic device by assessing its capability of emulating very different
large-scale network models with minimal, if any, impairment to their functionality.

In order to allow a comprehensive overview, the set of benchmark experiments is re-
quired to cover a broad range of possible network architectures, parameters and function
modi. To this end, we have chosen three very different network models, each of which
highlights crucial aspects of the biology-to-hardware mapping procedure and poses unique
challenges for the hardware implementation. In order to facilitate the comparison between
simulations of the original model and their hardware implementation, all experimental se-
tups were implemented in PyNN, running the same set of instructions on either simulation
back-end.

For each of our benchmark models we define a set of specific well-quantifiable func-
tionality criteria. These criteria are measured in software simulations of the ideal, i.e.,
undistorted network, which is then further referenced as the “original”.

Assuming that the broad range of hardware-specific distortion mechanisms affects var-
ious network parameters, their impact on these measures are investigated in software
simulations and various changes to the model structure are proposed in order to recover
the original functionality. The feasibility of these compensation methods is then studied
for the BrainScaleS neuromorphic platform with the help of the ESS described in Section
3.3.4.

All software simulations were performed with NEST (Diesmann and Gewaltig, 2002) or
Neuron (Hines and Carnevale, 2003).
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Figure 5.1.: Schematic of the workflow we have used for studying and compensating
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hardware-induced distortions of network dynamics. (1) A given network
model is defined by providing suitable parameters (for its connectivity and
components) and well-defined functionality criteria. (2) The distortions that
are expected to occur natively on the hardware back-end are implemented and
studied individually in software simulations. (3) Compensation methods are
designed and tested, with the aim of recovering the original network dynamics
as determined by the functionality criteria. (4) The network model is run on
the hardware (here: the ESS) without any compensation to evaluate the full
effect of the combined distortion mechanisms. (5) The compensation meth-
ods are combined and applied to the hardware (here: the ESS) simulation in
order to restore the original network dynamics.
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5.3. Cortical Layer 2/3 Attractor Memory

As our first benchmark, we have chosen an attractor network model of the cerebral cor-
tex which exhibits characteristic and well-quantifiable dynamics, both at the single-cell
level (membrane voltage UP and DOWN states) and for entire populations (gamma band
oscillations, pattern completion, attentional blink). For this model, the mapping to the
hardware was particularly challenging, due to the complex neuron and synapse models
required by the original architecture on the one hand, as well as its dense connectivity on
the other. In particular, we observed that the shape of synaptic conductances strongly
affects the duration of the attractor states. As expected for a model with relatively large
populations as functional units, it exhibits a pronounced robustness to synaptic weight
noise. Homogeneous synapse loss, on the other hand, has a direct impact on single-cell
dynamics, resulting in significant deviations from the expected high-level functionality,
such as the attenuation of attentional blink. As a compensation for synapse loss, we
suggest two methods: increasing the weights of the remaining synapses in order to main-
tain the total average synaptic conductance and reducing the size of certain populations
and thereby decreasing the total number of required synapses. After mapping to the
hardware substrate, synapse loss is not homogeneous, due to the different connectivity
patterns of the three neuron types required by the model. However, we were able to apply
a population-wise version of the suggested compensation methods and demonstrate their
effectiveness in recovering the previously defined target functionality measures.

5.3.1. Architecture

As described in Lundqvist et al. (2006) and Lundqvist et al. (2010), this model (henceforth
called L2/3 model) implements a columnar architecture (Buxhoeveden and Casanova,
2002; Mountcastle, 1997). The connectivity is compliant with data from cat cerebral
cortex (Thomson et al., 2002). The key aspect of the model is its modularity, which
manifests itself on two levels. On a large scale, the simulated cortical patch is represented
by a number Ny of hypercolumns (HCs) arranged on a hexagonal grid. On a smaller scale,
each HC is further subdivided into a number Ny¢ of minicolumns (MCs) (Buxhoeveden
and Casanova, 2002; Mountcastle, 1997). Such MCs should first and foremost be seen
as functional units, and could, in biology, also be a group of distributed, but highly
interconnected cells (Kampa et al., 2006; Perin et al., 2011; Song et al., 2005). In the
model, each MC consists, in turn, of 30 pyramidal (PYR), 2 regular spiking non-pyramidal
(RSNP) and 1 basket (BAS) cells (Markram et al., 2004a; Peters and Sethares, 1997).
Within each MC, PYR neurons are mutually interconnected, with 25% connectivity, such
that they will tend to be co-active and code for similar input.

The functional units of the network, the MCs, are connected in global, distributed
patterns containing a set of MCs in the network (Figure 5.2). Here the attractors, or
patterns, contain exactly one MC from each HC. We have only considered the case of
orthogonal patterns, which implies that no two attractors share any number of MCs.!
Due to the mutual excitation within an attractor, the network is abl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>